Let
$ \{x\} = \bigcap\limits_n\phi_{\omega_{1}(x)}\circ\cdots\circ\phi_{\omega_{n}(x)}(X). $
In this case we write
$ \begin{align*} M_{n}(x,y) = \max\big\{k\in \mathbb{N}\colon \omega_{i+1}(x) = \omega_{i+1}(y),\ldots, &\omega_{i+k}(x) = \omega_{i+k}(y) \; \\&\text{for some}\; 0\leq i \leq n-k\big\}, \end{align*} $
which counts the run length of the longest same block among the first
In this paper, we are concerned with the asymptotic behaviour of
Citation: |
[1] | M. D. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631. doi: 10.1007/bf01244320. |
[2] | D. Bessis, G. Paladin, G. Turchetti and S. Vaienti, Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets, J. Statist. Phys., 51 (1988), 109-134. doi: 10.1007/bf01015323. |
[3] | L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys., 219 (2001), 443-463. doi: 10.1007/s002200100427. |
[4] | Y. Bugeaud and B.-W. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in $\beta$-expansions, J. Fractal Geom., 1 (2014), 221-241. doi: 10.4171/jfg/6. |
[5] | I. P. Coornfeld, S. V. Fomin and Ya. G. Sinaǐ, Ergodic Theory, Springer-Verlag, New York, 1982. |
[6] | N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27. doi: 10.1007/bf02809888. |
[7] | K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^nd$ edition, John Wiley & Sons, Ltd., Chichester, 2014. |
[8] | J. L. Fernández, M. V. Melián and D. Pestana, Quantitative recurrence properties of expanding maps, preprint, arXiv: math/0703222. |
[9] | S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805. doi: 10.4310/mrl.2007.v14.n5.a8. |
[10] | G. H. Hardy and E. M. Wright, An Introduction to The Theory of Numbers, 5$^nd$ edition, The Clarendon Press, Oxford University Press, New York, 1979. |
[11] | R. Hill and S. L. Velani, The ergodic theory of shrinking targets, Invent. Math., 119 (1995), 175-198. doi: 10.1007/bf01245179. |
[12] | R. Hill and S. L. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Études Sci. Publ. Math., (1997), 193–216. doi: 10.1007/bf02699537. |
[13] | N. Haydn and S. L. Vaienti, The Rényi entropy function and the large deviation of short return times, Ergodic Theory Dynam. Systems., 30 (2010), 159-179. doi: 10.1017/s0143385709000030. |
[14] | H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser., 31 (1969), 31-42. doi: 10.1016/1385-7258(69)90023-7. |
[15] | A. Ya. Khintchine, Continued Fractions, Translated by Peter WynnP. Noordhoff, Ltd., Groningen 1963. doi: 10.1017/s0008439500032033. |
[16] | B. Li, B. W. Wang, J. Wu and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. London Math. Soc., 108 (2014), 159-186. doi: 10.1112/plms/pdt017. |
[17] | J. Li and X. Yang, On longest matching consecutive subsequence, Int. J. Number Theory., 15 (2019), 1745-1758. doi: 10.1142/s1793042119500970. |
[18] | R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154. doi: 10.1112/plms/s3-73.1.105. |
[19] | R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc., 351 (1999), 4995-5025. doi: 10.1090/s0002-9947-99-02268-0. |
[20] | D. S. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory., 39 (1993), 78-83. doi: 10.1109/18.179344. |
[21] | L. Peng, On the hitting depth in the dynamical system of continued fractions, Chaos. Solitons. Fractals., 69 (2014), 22-30. doi: 10.1016/j.chaos.2014.09.003. |
[22] | L. Peng, B. Tan and B. W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system, Sci. China Math., 55 (2012), 131-140. doi: 10.1007/s11425-011-4303-9. |
[23] | B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259-267. doi: 10.3934/dcds.2006.15.259. |
[24] | B. O. Stratmann and M. Urbánski, Jarník, Julia$\colon$a Diophantine analysis for geometrically finite Kleinian groups with parabolic elements, Math. Scand., 91 (2002), 27-54. doi: 10.7146/math.scand.a-14377. |
[25] | S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math., 280 (2015), 472-505. doi: 10.1016/j.aim.2015.02.019. |
[26] | B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math., 228 (2011), 2071-2097. doi: 10.1016/j.aim.2011.06.034. |
[27] | F. Takens and E. Verbitski, Generalized entropies$\colon$Rényi and correlation integral approach, Nonlinearity., 11 (1998), 771-782. doi: 10.1088/0951-7715/11/4/001. |
[28] | B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235. doi: 10.1016/j.jmaa.2019.05.029. |
[29] | P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |
[30] | Q.-L. Zhou, Dimensions of recurrent sets in $\beta$-symbolic dynamics, J. Math. Anal. Appl., 472 (2019), 1762-1776. doi: 10.1016/j.jmaa.2018.12.022. |