• Previous Article
    On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
  • DCDS Home
  • This Issue
  • Next Article
    Global generalized solutions to a chemotaxis model of capillary-sprout growth during tumor angiogenesis
September  2021, 41(9): 4085-4104. doi: 10.3934/dcds.2021029

Best approximation of orbits in iterated function systems

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

School of Science, Wuhan University of Technology, Wuhan 430074, China

* Corresponding author: Bo Tan

Received  October 2020 Revised  December 2020 Published  September 2021 Early access  January 2021

Let
$ \Phi = \{\phi_{i}\colon i\in\Lambda\} $
be an iterated function system on a compact metric space
$ (X,d) $
, where the index set
$ \Lambda = \{1, 2, \ldots,l\} $
with
$ l \ge2 $
, or
$ \Lambda = \{1,2,\ldots\} $
. We denote by
$ J $
the attractor of
$ \Phi $
, and by
$ D $
the subset of points possessing multiple codings. For any
$ x\in J\backslash D, $
there is a unique integer sequence
$ \{\omega_{n}(x)\}_{n\geq 1}\subset \Lambda^{\mathbb{N}} $
, called the digit sequence of
$ x, $
such that
$ \{x\} = \bigcap\limits_n\phi_{\omega_{1}(x)}\circ\cdots\circ\phi_{\omega_{n}(x)}(X). $
In this case we write
$ x = [\omega_{1}(x),\omega_{2}(x),\ldots]. $
For
$ x, y\in J\backslash D, $
we define the shortest distance function
$ M_{n}(x,y) $
as
$ \begin{align*} M_{n}(x,y) = \max\big\{k\in \mathbb{N}\colon \omega_{i+1}(x) = \omega_{i+1}(y),\ldots, &\omega_{i+k}(x) = \omega_{i+k}(y) \; \\&\text{for some}\; 0\leq i \leq n-k\big\}, \end{align*} $
which counts the run length of the longest same block among the first
$ n $
digits of
$ (x,y). $
In this paper, we are concerned with the asymptotic behaviour of
$ M_{n}(x,y) $
as
$ n $
tends to
$ \infty. $
We calculate the Hausdorff dimensions of the exceptional sets arising from the shortest distance function. As applications, we study the exceptional sets in several concrete systems such as continued fractions system, Lüroth system,
$ N $
-ary system, and triadic Cantor system.
Citation: Saisai Shi, Bo Tan, Qinglong Zhou. Best approximation of orbits in iterated function systems. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4085-4104. doi: 10.3934/dcds.2021029
References:
[1]

M. D. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.  doi: 10.1007/bf01244320.

[2]

D. BessisG. PaladinG. Turchetti and S. Vaienti, Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets, J. Statist. Phys., 51 (1988), 109-134.  doi: 10.1007/bf01015323.

[3]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys., 219 (2001), 443-463.  doi: 10.1007/s002200100427.

[4]

Y. Bugeaud and B.-W. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in $\beta$-expansions, J. Fractal Geom., 1 (2014), 221-241.  doi: 10.4171/jfg/6.

[5]

I. P. Coornfeld, S. V. Fomin and Ya. G. Sinaǐ, Ergodic Theory, Springer-Verlag, New York, 1982.

[6]

N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.  doi: 10.1007/bf02809888.

[7]

K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^nd$ edition, John Wiley & Sons, Ltd., Chichester, 2014.

[8]

J. L. Fernández, M. V. Melián and D. Pestana, Quantitative recurrence properties of expanding maps, preprint, arXiv: math/0703222.

[9]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/mrl.2007.v14.n5.a8.

[10] G. H. Hardy and E. M. Wright, An Introduction to The Theory of Numbers, 5$^nd$ edition, The Clarendon Press, Oxford University Press, New York, 1979. 
[11]

R. Hill and S. L. Velani, The ergodic theory of shrinking targets, Invent. Math., 119 (1995), 175-198.  doi: 10.1007/bf01245179.

[12]

R. Hill and S. L. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Études Sci. Publ. Math., (1997), 193–216. doi: 10.1007/bf02699537.

[13]

N. Haydn and S. L. Vaienti, The Rényi entropy function and the large deviation of short return times, Ergodic Theory Dynam. Systems., 30 (2010), 159-179.  doi: 10.1017/s0143385709000030.

[14]

H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser., 31 (1969), 31-42.  doi: 10.1016/1385-7258(69)90023-7.

[15]

A. Ya. Khintchine, Continued Fractions, Translated by Peter WynnP. Noordhoff, Ltd., Groningen 1963. doi: 10.1017/s0008439500032033.

[16]

B. LiB. W. WangJ. Wu and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. London Math. Soc., 108 (2014), 159-186.  doi: 10.1112/plms/pdt017.

[17]

J. Li and X. Yang, On longest matching consecutive subsequence, Int. J. Number Theory., 15 (2019), 1745-1758.  doi: 10.1142/s1793042119500970.

[18]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.

[19]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc., 351 (1999), 4995-5025.  doi: 10.1090/s0002-9947-99-02268-0.

[20]

D. S. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory., 39 (1993), 78-83.  doi: 10.1109/18.179344.

[21]

L. Peng, On the hitting depth in the dynamical system of continued fractions, Chaos. Solitons. Fractals., 69 (2014), 22-30.  doi: 10.1016/j.chaos.2014.09.003.

[22]

L. PengB. Tan and B. W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system, Sci. China Math., 55 (2012), 131-140.  doi: 10.1007/s11425-011-4303-9.

[23]

B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259-267.  doi: 10.3934/dcds.2006.15.259.

[24]

B. O. Stratmann and M. Urbánski, Jarník, Julia$\colon$a Diophantine analysis for geometrically finite Kleinian groups with parabolic elements, Math. Scand., 91 (2002), 27-54.  doi: 10.7146/math.scand.a-14377.

[25]

S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math., 280 (2015), 472-505.  doi: 10.1016/j.aim.2015.02.019.

[26]

B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math., 228 (2011), 2071-2097.  doi: 10.1016/j.aim.2011.06.034.

[27]

F. Takens and E. Verbitski, Generalized entropies$\colon$Rényi and correlation integral approach, Nonlinearity., 11 (1998), 771-782.  doi: 10.1088/0951-7715/11/4/001.

[28]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.

[29]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

[30]

Q.-L. Zhou, Dimensions of recurrent sets in $\beta$-symbolic dynamics, J. Math. Anal. Appl., 472 (2019), 1762-1776.  doi: 10.1016/j.jmaa.2018.12.022.

show all references

References:
[1]

M. D. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.  doi: 10.1007/bf01244320.

[2]

D. BessisG. PaladinG. Turchetti and S. Vaienti, Generalized dimensions, entropies, and Liapunov exponents from the pressure function for strange sets, J. Statist. Phys., 51 (1988), 109-134.  doi: 10.1007/bf01015323.

[3]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys., 219 (2001), 443-463.  doi: 10.1007/s002200100427.

[4]

Y. Bugeaud and B.-W. Wang, Distribution of full cylinders and the Diophantine properties of the orbits in $\beta$-expansions, J. Fractal Geom., 1 (2014), 221-241.  doi: 10.4171/jfg/6.

[5]

I. P. Coornfeld, S. V. Fomin and Ya. G. Sinaǐ, Ergodic Theory, Springer-Verlag, New York, 1982.

[6]

N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.  doi: 10.1007/bf02809888.

[7]

K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, 3$^nd$ edition, John Wiley & Sons, Ltd., Chichester, 2014.

[8]

J. L. Fernández, M. V. Melián and D. Pestana, Quantitative recurrence properties of expanding maps, preprint, arXiv: math/0703222.

[9]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/mrl.2007.v14.n5.a8.

[10] G. H. Hardy and E. M. Wright, An Introduction to The Theory of Numbers, 5$^nd$ edition, The Clarendon Press, Oxford University Press, New York, 1979. 
[11]

R. Hill and S. L. Velani, The ergodic theory of shrinking targets, Invent. Math., 119 (1995), 175-198.  doi: 10.1007/bf01245179.

[12]

R. Hill and S. L. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Études Sci. Publ. Math., (1997), 193–216. doi: 10.1007/bf02699537.

[13]

N. Haydn and S. L. Vaienti, The Rényi entropy function and the large deviation of short return times, Ergodic Theory Dynam. Systems., 30 (2010), 159-179.  doi: 10.1017/s0143385709000030.

[14]

H. Jager and C. de Vroedt, Lüroth series and their ergodic properties, Nederl. Akad. Wetensch. Proc. Ser., 31 (1969), 31-42.  doi: 10.1016/1385-7258(69)90023-7.

[15]

A. Ya. Khintchine, Continued Fractions, Translated by Peter WynnP. Noordhoff, Ltd., Groningen 1963. doi: 10.1017/s0008439500032033.

[16]

B. LiB. W. WangJ. Wu and J. Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. London Math. Soc., 108 (2014), 159-186.  doi: 10.1112/plms/pdt017.

[17]

J. Li and X. Yang, On longest matching consecutive subsequence, Int. J. Number Theory., 15 (2019), 1745-1758.  doi: 10.1142/s1793042119500970.

[18]

R. D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc., 73 (1996), 105-154.  doi: 10.1112/plms/s3-73.1.105.

[19]

R. D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc., 351 (1999), 4995-5025.  doi: 10.1090/s0002-9947-99-02268-0.

[20]

D. S. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory., 39 (1993), 78-83.  doi: 10.1109/18.179344.

[21]

L. Peng, On the hitting depth in the dynamical system of continued fractions, Chaos. Solitons. Fractals., 69 (2014), 22-30.  doi: 10.1016/j.chaos.2014.09.003.

[22]

L. PengB. Tan and B. W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system, Sci. China Math., 55 (2012), 131-140.  doi: 10.1007/s11425-011-4303-9.

[23]

B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete Contin. Dyn. Syst., 15 (2006), 259-267.  doi: 10.3934/dcds.2006.15.259.

[24]

B. O. Stratmann and M. Urbánski, Jarník, Julia$\colon$a Diophantine analysis for geometrically finite Kleinian groups with parabolic elements, Math. Scand., 91 (2002), 27-54.  doi: 10.7146/math.scand.a-14377.

[25]

S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math., 280 (2015), 472-505.  doi: 10.1016/j.aim.2015.02.019.

[26]

B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math., 228 (2011), 2071-2097.  doi: 10.1016/j.aim.2011.06.034.

[27]

F. Takens and E. Verbitski, Generalized entropies$\colon$Rényi and correlation integral approach, Nonlinearity., 11 (1998), 771-782.  doi: 10.1088/0951-7715/11/4/001.

[28]

B. Tan and Q. L. Zhou, The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., 478 (2019), 229-235.  doi: 10.1016/j.jmaa.2019.05.029.

[29]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.

[30]

Q.-L. Zhou, Dimensions of recurrent sets in $\beta$-symbolic dynamics, J. Math. Anal. Appl., 472 (2019), 1762-1776.  doi: 10.1016/j.jmaa.2018.12.022.

[1]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[2]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[3]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[4]

Kanji Inui, Hikaru Okada, Hiroki Sumi. The Hausdorff dimension function of the family of conformal iterated function systems of generalized complex continued fractions. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 753-766. doi: 10.3934/dcds.2020060

[5]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[6]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[7]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5873-5903. doi: 10.3934/dcdsb.2021070

[8]

Michel C. Delfour. Hadamard Semidifferential, Oriented Distance Function, and some Applications. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1917-1951. doi: 10.3934/cpaa.2021076

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Peter Frolkovič, Karol Mikula, Jozef Urbán. Distance function and extension in normal direction for implicitly defined interfaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 871-880. doi: 10.3934/dcdss.2015.8.871

[11]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[12]

Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311

[13]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[14]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[15]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[16]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial and Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[17]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[18]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[19]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[20]

Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533-547. doi: 10.3934/jimo.2005.1.533

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (285)
  • HTML views (241)
  • Cited by (0)

Other articles
by authors

[Back to Top]