-
Previous Article
Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching
- DCDS Home
- This Issue
-
Next Article
On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $
1. | Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB, Brazil |
2. | Department of Mathematics, Faculty of Exact Sciences, Lab. of Applied Mathematics, University of Bejaia, Bejaia, 06000, Algeria |
In this paper we study the local and global existence of solutions for a class of heat equation in whole $ \mathbb{R}^{N} $ where the nonlinearity has a critical growth for $ N \geq 2 $. In order to prove the global existence, we will use the potential well theory combined with the Nehari manifold, and also with the Pohozaev manifold that is a novelty for this type of problem. Moreover, the blow-up phenomena of local solutions is investigated by combining the subdifferential approach with the concavity method.
References:
[1] |
C. O. Alves and M. M. Cavalcanti,
On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.
doi: 10.1007/s00526-008-0188-z. |
[2] |
C. O. Alves,
Existence of positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity ith exponential critical growth in $\mathbb{R}^2$, Milan J. Math, 84 (2016), 1-22.
doi: 10.1007/s00032-015-0247-9. |
[3] |
C. O. Alves, J. M. B. do Ó and O. H. Miyagaki,
On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal, 56 (2004), 781-791.
doi: 10.1016/j.na.2003.06.003. |
[4] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
G. Barles, S. Biton and O. Ley,
Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in $\mathbb{R}^{2}$, J. Differential Equations, 187 (2003), 456-472.
doi: 10.1016/S0022-0396(02)00071-2. |
[6] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations, I existence of a ground state, Archive for Rational Mechanics and Analysis, 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[7] |
T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17 (2020), Paper No. 162, 24 pp.
doi: 10.1007/s00009-020-01584-6. |
[8] |
T. Boudjeriou, Global existence and blow-up of solutions for a parabolic equation involving the fractional $p(x)$-Laplacian, Applicable Analysis, (2020).
doi: 10.1080/00036811.2020.1829601. |
[9] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equation, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[10] |
X. D. Cao and Z. Zhang,
Differential Harnack estimates for parabolic equations, Complex and Differential Geometry, 8 (2011), 87-98.
doi: 10.1007/978-3-642-20300-8_5. |
[11] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez,
Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.
doi: 10.1016/j.jde.2004.04.011. |
[12] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti,
Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl, 291 (2004), 109-127.
doi: 10.1016/j.jmaa.2003.10.020. |
[13] |
H. Chen, P. Luo and G. Liu,
Global solution and below-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl, 422 (2015), 84-98.
doi: 10.1016/j.jmaa.2014.08.030. |
[14] |
H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, J. Appl. Math. Optim., (2019).
doi: 10.1007/s00245-019-09603-z. |
[15] |
J. A. Esquivel-Avila,
A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52 (2003), 1111-1127.
doi: 10.1016/S0362-546X(02)00155-4. |
[16] |
J. C. Robinson, Infinite-dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
![]() ![]() |
[17] |
L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 1998. |
[18] |
D. G. Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $\mathbb{R}^2$ with nonlinearity in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[19] |
H. Fujita,
On the blowing up solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[20] |
Y. Fu and P. Pucci,
On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qualitative Theory Differ. Equ, 70 (2016), 1-17.
doi: 10.14232/ejqtde.2016.1.70. |
[21] |
V. A. Galaktionov and H. A. Levine,
A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal, 34 (1998), 1005-1027.
doi: 10.1016/S0362-546X(97)00716-5. |
[22] |
V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez,
Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.
doi: 10.1137/0524071. |
[23] |
V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez,
The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst, 8 (2002), 399-433.
doi: 10.3934/dcds.2002.8.399. |
[24] |
F. Gazzola and T. Weth,
Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ Integral Equ, 18 (2005), 961-990.
|
[25] |
C. G. Gal and M. Warma,
On some degenerate non-local parabolic equation associated with the fractional $p$-Laplacian, Dyn. Partial Differ. Equ, 14 (2017), 47-77.
doi: 10.4310/DPDE.2017.v14.n1.a4. |
[26] |
H. Ishii,
Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations, 26 (1977), 291-319.
doi: 10.1016/0022-0396(77)90196-6. |
[27] |
R. Jiang and J. Zhou,
Blow-up and global existence of solutions to a parabolic equation associated with fractional $p$-Laplacian, Com on Pure. Appl Anal, 18 (2019), 1205-1226.
doi: 10.3934/cpaa.2019058. |
[28] |
Y. Liu and J. Zhao,
On the potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal, 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[29] |
X. Mingqi, D. V. R$\breve{\text{a}}$dulescu and B. L. Zhang,
Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.
doi: 10.1088/1361-6544/aaba35. |
[30] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math, 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[31] |
S. I. Pohozaev,
Eigenfunctions of the equation $\Delta u +\lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.
|
[32] |
D. H. Sattinger,
On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Math, 30 (1968), 148-172.
doi: 10.1007/BF00250942. |
[33] |
R. Xu,
Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math, 68 (2010), 459-468.
doi: 10.1090/S0033-569X-2010-01197-0. |
[34] |
S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL. 2004.
doi: 10.1201/9780203492222. |
show all references
References:
[1] |
C. O. Alves and M. M. Cavalcanti,
On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.
doi: 10.1007/s00526-008-0188-z. |
[2] |
C. O. Alves,
Existence of positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity ith exponential critical growth in $\mathbb{R}^2$, Milan J. Math, 84 (2016), 1-22.
doi: 10.1007/s00032-015-0247-9. |
[3] |
C. O. Alves, J. M. B. do Ó and O. H. Miyagaki,
On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal, 56 (2004), 781-791.
doi: 10.1016/j.na.2003.06.003. |
[4] |
H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
G. Barles, S. Biton and O. Ley,
Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in $\mathbb{R}^{2}$, J. Differential Equations, 187 (2003), 456-472.
doi: 10.1016/S0022-0396(02)00071-2. |
[6] |
H. Berestycki and P. L. Lions,
Nonlinear scalar field equations, I existence of a ground state, Archive for Rational Mechanics and Analysis, 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[7] |
T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17 (2020), Paper No. 162, 24 pp.
doi: 10.1007/s00009-020-01584-6. |
[8] |
T. Boudjeriou, Global existence and blow-up of solutions for a parabolic equation involving the fractional $p(x)$-Laplacian, Applicable Analysis, (2020).
doi: 10.1080/00036811.2020.1829601. |
[9] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equation, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[10] |
X. D. Cao and Z. Zhang,
Differential Harnack estimates for parabolic equations, Complex and Differential Geometry, 8 (2011), 87-98.
doi: 10.1007/978-3-642-20300-8_5. |
[11] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez,
Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.
doi: 10.1016/j.jde.2004.04.011. |
[12] |
M. M. Cavalcanti and V. N. Domingos Cavalcanti,
Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl, 291 (2004), 109-127.
doi: 10.1016/j.jmaa.2003.10.020. |
[13] |
H. Chen, P. Luo and G. Liu,
Global solution and below-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl, 422 (2015), 84-98.
doi: 10.1016/j.jmaa.2014.08.030. |
[14] |
H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, J. Appl. Math. Optim., (2019).
doi: 10.1007/s00245-019-09603-z. |
[15] |
J. A. Esquivel-Avila,
A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52 (2003), 1111-1127.
doi: 10.1016/S0362-546X(02)00155-4. |
[16] |
J. C. Robinson, Infinite-dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.
![]() ![]() |
[17] |
L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 1998. |
[18] |
D. G. Figueiredo, O. H. Miyagaki and B. Ruf,
Elliptic equations in $\mathbb{R}^2$ with nonlinearity in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.
doi: 10.1007/BF01205003. |
[19] |
H. Fujita,
On the blowing up solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[20] |
Y. Fu and P. Pucci,
On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qualitative Theory Differ. Equ, 70 (2016), 1-17.
doi: 10.14232/ejqtde.2016.1.70. |
[21] |
V. A. Galaktionov and H. A. Levine,
A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal, 34 (1998), 1005-1027.
doi: 10.1016/S0362-546X(97)00716-5. |
[22] |
V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez,
Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.
doi: 10.1137/0524071. |
[23] |
V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez,
The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst, 8 (2002), 399-433.
doi: 10.3934/dcds.2002.8.399. |
[24] |
F. Gazzola and T. Weth,
Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ Integral Equ, 18 (2005), 961-990.
|
[25] |
C. G. Gal and M. Warma,
On some degenerate non-local parabolic equation associated with the fractional $p$-Laplacian, Dyn. Partial Differ. Equ, 14 (2017), 47-77.
doi: 10.4310/DPDE.2017.v14.n1.a4. |
[26] |
H. Ishii,
Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations, 26 (1977), 291-319.
doi: 10.1016/0022-0396(77)90196-6. |
[27] |
R. Jiang and J. Zhou,
Blow-up and global existence of solutions to a parabolic equation associated with fractional $p$-Laplacian, Com on Pure. Appl Anal, 18 (2019), 1205-1226.
doi: 10.3934/cpaa.2019058. |
[28] |
Y. Liu and J. Zhao,
On the potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal, 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[29] |
X. Mingqi, D. V. R$\breve{\text{a}}$dulescu and B. L. Zhang,
Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.
doi: 10.1088/1361-6544/aaba35. |
[30] |
L. E. Payne and D. H. Sattinger,
Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math, 22 (1975), 273-303.
doi: 10.1007/BF02761595. |
[31] |
S. I. Pohozaev,
Eigenfunctions of the equation $\Delta u +\lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.
|
[32] |
D. H. Sattinger,
On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Math, 30 (1968), 148-172.
doi: 10.1007/BF00250942. |
[33] |
R. Xu,
Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math, 68 (2010), 459-468.
doi: 10.1090/S0033-569X-2010-01197-0. |
[34] |
S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL. 2004.
doi: 10.1201/9780203492222. |
[1] |
Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357 |
[2] |
E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207 |
[3] |
Mokhtar Kirane, Ahmed Alsaedi, Bashir Ahmad. Blowing-up solutions of differential equations with shifts: A survey. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022100 |
[4] |
Naoyuki Ishimura, Shin'ya Matsui. On blowing-up solutions of the Blasius equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 985-992. doi: 10.3934/dcds.2003.9.985 |
[5] |
Yessine Dammak. Blowing-up solutions for a supercritical elliptic equation. Communications on Pure and Applied Analysis, 2022, 21 (2) : 625-637. doi: 10.3934/cpaa.2021191 |
[6] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[7] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[8] |
Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465 |
[9] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[10] |
Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905 |
[11] |
Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229 |
[12] |
Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729 |
[13] |
Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907 |
[14] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[15] |
Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure and Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013 |
[16] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[17] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[18] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[19] |
Fabio Punzo. Global solutions of semilinear parabolic equations with drift term on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3733-3746. doi: 10.3934/dcds.2022030 |
[20] |
Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]