• Previous Article
    Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching
  • DCDS Home
  • This Issue
  • Next Article
    On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
September  2021, 41(9): 4125-4144. doi: 10.3934/dcds.2021031

Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $

1. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB, Brazil

2. 

Department of Mathematics, Faculty of Exact Sciences, Lab. of Applied Mathematics, University of Bejaia, Bejaia, 06000, Algeria

* Corresponding author: Tahir Boudjeriou

Received  March 2020 Revised  December 2020 Published  February 2021

Fund Project: C. O. Alves was partially supported by CNPq/Brazil 304804/2017-7

In this paper we study the local and global existence of solutions for a class of heat equation in whole $ \mathbb{R}^{N} $ where the nonlinearity has a critical growth for $ N \geq 2 $. In order to prove the global existence, we will use the potential well theory combined with the Nehari manifold, and also with the Pohozaev manifold that is a novelty for this type of problem. Moreover, the blow-up phenomena of local solutions is investigated by combining the subdifferential approach with the concavity method.

Citation: Claudianor O. Alves, Tahir Boudjeriou. Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4125-4144. doi: 10.3934/dcds.2021031
References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[2]

C. O. Alves, Existence of positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity ith exponential critical growth in $\mathbb{R}^2$, Milan J. Math, 84 (2016), 1-22.  doi: 10.1007/s00032-015-0247-9.  Google Scholar

[3]

C. O. AlvesJ. M. B. do Ó and O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal, 56 (2004), 781-791.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[4]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[5]

G. BarlesS. Biton and O. Ley, Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in $\mathbb{R}^{2}$, J. Differential Equations, 187 (2003), 456-472.  doi: 10.1016/S0022-0396(02)00071-2.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Archive for Rational Mechanics and Analysis, 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[7]

T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17 (2020), Paper No. 162, 24 pp. doi: 10.1007/s00009-020-01584-6.  Google Scholar

[8]

T. Boudjeriou, Global existence and blow-up of solutions for a parabolic equation involving the fractional $p(x)$-Laplacian, Applicable Analysis, (2020). doi: 10.1080/00036811.2020.1829601.  Google Scholar

[9]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equation, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.  Google Scholar

[10]

X. D. Cao and Z. Zhang, Differential Harnack estimates for parabolic equations, Complex and Differential Geometry, 8 (2011), 87-98.  doi: 10.1007/978-3-642-20300-8_5.  Google Scholar

[11]

M. M. CavalcantiV. N. Domingos Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[12]

M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl, 291 (2004), 109-127.  doi: 10.1016/j.jmaa.2003.10.020.  Google Scholar

[13]

H. ChenP. Luo and G. Liu, Global solution and below-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl, 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[14]

H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, J. Appl. Math. Optim., (2019). doi: 10.1007/s00245-019-09603-z.  Google Scholar

[15]

J. A. Esquivel-Avila, A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52 (2003), 1111-1127.  doi: 10.1016/S0362-546X(02)00155-4.  Google Scholar

[16] J. C. Robinson, Infinite-dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.   Google Scholar
[17]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 1998.  Google Scholar

[18]

D. G. FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearity in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[19]

H. Fujita, On the blowing up solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[20]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qualitative Theory Differ. Equ, 70 (2016), 1-17.  doi: 10.14232/ejqtde.2016.1.70.  Google Scholar

[21]

V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal, 34 (1998), 1005-1027.  doi: 10.1016/S0362-546X(97)00716-5.  Google Scholar

[22]

V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez, Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.  doi: 10.1137/0524071.  Google Scholar

[23]

V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst, 8 (2002), 399-433.  doi: 10.3934/dcds.2002.8.399.  Google Scholar

[24]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ Integral Equ, 18 (2005), 961-990.   Google Scholar

[25]

C. G. Gal and M. Warma, On some degenerate non-local parabolic equation associated with the fractional $p$-Laplacian, Dyn. Partial Differ. Equ, 14 (2017), 47-77.  doi: 10.4310/DPDE.2017.v14.n1.a4.  Google Scholar

[26]

H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations, 26 (1977), 291-319.  doi: 10.1016/0022-0396(77)90196-6.  Google Scholar

[27]

R. Jiang and J. Zhou, Blow-up and global existence of solutions to a parabolic equation associated with fractional $p$-Laplacian, Com on Pure. Appl Anal, 18 (2019), 1205-1226.  doi: 10.3934/cpaa.2019058.  Google Scholar

[28]

Y. Liu and J. Zhao, On the potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal, 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[29]

X. MingqiD. V. R$\breve{\text{a}}$dulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[30]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math, 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[31]

S. I. Pohozaev, Eigenfunctions of the equation $\Delta u +\lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar

[32]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Math, 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[33]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math, 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0.  Google Scholar

[34]

S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL. 2004. doi: 10.1201/9780203492222.  Google Scholar

show all references

References:
[1]

C. O. Alves and M. M. Cavalcanti, On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source, Calc. Var. Partial Differential Equations, 34 (2009), 377-411.  doi: 10.1007/s00526-008-0188-z.  Google Scholar

[2]

C. O. Alves, Existence of positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity ith exponential critical growth in $\mathbb{R}^2$, Milan J. Math, 84 (2016), 1-22.  doi: 10.1007/s00032-015-0247-9.  Google Scholar

[3]

C. O. AlvesJ. M. B. do Ó and O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal, 56 (2004), 781-791.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[4]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[5]

G. BarlesS. Biton and O. Ley, Uniqueness for parabolic equations without growth condition and applications to the mean curvature flow in $\mathbb{R}^{2}$, J. Differential Equations, 187 (2003), 456-472.  doi: 10.1016/S0022-0396(02)00071-2.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Archive for Rational Mechanics and Analysis, 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[7]

T. Boudjeriou, Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity, Mediterr. J. Math., 17 (2020), Paper No. 162, 24 pp. doi: 10.1007/s00009-020-01584-6.  Google Scholar

[8]

T. Boudjeriou, Global existence and blow-up of solutions for a parabolic equation involving the fractional $p(x)$-Laplacian, Applicable Analysis, (2020). doi: 10.1080/00036811.2020.1829601.  Google Scholar

[9]

D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differential Equation, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.  Google Scholar

[10]

X. D. Cao and Z. Zhang, Differential Harnack estimates for parabolic equations, Complex and Differential Geometry, 8 (2011), 87-98.  doi: 10.1007/978-3-642-20300-8_5.  Google Scholar

[11]

M. M. CavalcantiV. N. Domingos Cavalcanti and P. Martinez, Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term, J. Differential Equations, 203 (2004), 119-158.  doi: 10.1016/j.jde.2004.04.011.  Google Scholar

[12]

M. M. Cavalcanti and V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl, 291 (2004), 109-127.  doi: 10.1016/j.jmaa.2003.10.020.  Google Scholar

[13]

H. ChenP. Luo and G. Liu, Global solution and below-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl, 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[14]

H. Ding and J. Zhou, Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity, J. Appl. Math. Optim., (2019). doi: 10.1007/s00245-019-09603-z.  Google Scholar

[15]

J. A. Esquivel-Avila, A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations, Nonlinear Anal., 52 (2003), 1111-1127.  doi: 10.1016/S0362-546X(02)00155-4.  Google Scholar

[16] J. C. Robinson, Infinite-dimensional Dynamical Systems an Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001.   Google Scholar
[17]

L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, 1998.  Google Scholar

[18]

D. G. FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearity in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[19]

H. Fujita, On the blowing up solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[20]

Y. Fu and P. Pucci, On solutions of space-fractional diffusion equations by means of potential wells, Electron. J. Qualitative Theory Differ. Equ, 70 (2016), 1-17.  doi: 10.14232/ejqtde.2016.1.70.  Google Scholar

[21]

V. A. Galaktionov and H. A. Levine, A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal, 34 (1998), 1005-1027.  doi: 10.1016/S0362-546X(97)00716-5.  Google Scholar

[22]

V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez, Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.  doi: 10.1137/0524071.  Google Scholar

[23]

V. A. Galaktionov and J. L. V$\acute{\text{a}}$zquez, The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dyn. Syst, 8 (2002), 399-433.  doi: 10.3934/dcds.2002.8.399.  Google Scholar

[24]

F. Gazzola and T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ Integral Equ, 18 (2005), 961-990.   Google Scholar

[25]

C. G. Gal and M. Warma, On some degenerate non-local parabolic equation associated with the fractional $p$-Laplacian, Dyn. Partial Differ. Equ, 14 (2017), 47-77.  doi: 10.4310/DPDE.2017.v14.n1.a4.  Google Scholar

[26]

H. Ishii, Asymptotic stability and blowing up of solutions of some nonlinear equations, J. Differential Equations, 26 (1977), 291-319.  doi: 10.1016/0022-0396(77)90196-6.  Google Scholar

[27]

R. Jiang and J. Zhou, Blow-up and global existence of solutions to a parabolic equation associated with fractional $p$-Laplacian, Com on Pure. Appl Anal, 18 (2019), 1205-1226.  doi: 10.3934/cpaa.2019058.  Google Scholar

[28]

Y. Liu and J. Zhao, On the potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal, 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[29]

X. MingqiD. V. R$\breve{\text{a}}$dulescu and B. L. Zhang, Nonlocal Kirchhoff diffusion problems: Local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[30]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel. J. Math, 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[31]

S. I. Pohozaev, Eigenfunctions of the equation $\Delta u +\lambda f(u) = 0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.   Google Scholar

[32]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Math, 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[33]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math, 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0.  Google Scholar

[34]

S. Zheng, Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL. 2004. doi: 10.1201/9780203492222.  Google Scholar

[1]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[2]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

[3]

Naoyuki Ishimura, Shin'ya Matsui. On blowing-up solutions of the Blasius equation. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 985-992. doi: 10.3934/dcds.2003.9.985

[4]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[5]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[6]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[7]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[8]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[9]

Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729

[10]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[11]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[12]

Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure & Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013

[13]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[14]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[15]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[16]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[17]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[18]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[19]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

[20]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

2019 Impact Factor: 1.338

Article outline

[Back to Top]