[1]
|
H. Bahouri and G. Perelman, Global well-posedness for the derivative nonlinear Schrödinger equation, Preprint, arXiv: 2012.01923.
|
[2]
|
Á. Bényi and K. A. Okoudjou, Local well-posedness of nonlinear dispersive equations on modulation spaces, Bull. Lond. Math. Soc., 41 (2009), 549-558.
doi: 10.1112/blms/bdp027.
|
[3]
|
Á. Bényi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multipliers for modulation spaces, J. Funct. Anal., 246 (2007), 366-384.
doi: 10.1016/j.jfa.2006.12.019.
|
[4]
|
J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, 1976.
|
[5]
|
H. A. Biagioni and F. Linares, Ill-posedness for the derivative Schrödinger and generalized Benjamin-Ono equations, Trans. Amer. Math. Soc., 353 (2001), 3649-3659.
doi: 10.1090/S0002-9947-01-02754-4.
|
[6]
|
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅰ. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020.
|
[7]
|
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Ⅱ. The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688.
|
[8]
|
L. Chaichenets, D. Hundertmark, P. Kunstmann and N. Pattakos, On the existence of global solutions of the one-dimensional cubic NLS for initial data in the modulation space $M^{p, q}(\mathbb{R})$, J. Differential Equations, 263 (2017), 4429-4441.
doi: 10.1016/j.jde.2017.04.020.
|
[9]
|
L. Chaichenets, D. Hundertmark, P. Kunstmann and N. Pattakos, Nonlinear Schrödinger equation, differentiation by parts and modulation spaces, J. Evol. Equ., 19 (2019), 803-843.
doi: 10.1007/s00028-019-00501-z.
|
[10]
|
J. Chen, D. Fan and L. Sun, Asymptotic estimates for unimodular Fourier multipliers on modulation spaces, Discrete Contin. Dyn. Syst., 32 (2012), 467-485.
doi: 10.3934/dcds.2012.32.467.
|
[11]
|
M. J. Chen, B. X. Wang, S. X. Wang and M. W. Wong, On dissipative nonlinear evolutional pseudo-differential equations, Appl. Comput. Harmon. Anal., 48 (2020), 182-217.
doi: 10.1016/j.acha.2018.04.003.
|
[12]
|
A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Commun. Partial Differ. Equations, 3 (1978), 979-1005.
doi: 10.1080/03605307808820083.
|
[13]
|
E. Cordero and F. Nicola, Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation, J. Funct. Anal., 254 (2008), 506-534.
doi: 10.1016/j.jfa.2007.09.015.
|
[14]
|
E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrödinger equation, J. Differential Equations, 245 (2008), 1945-1974.
doi: 10.1016/j.jde.2008.07.009.
|
[15]
|
E. Cordero and F. Nicola, Remarks on Fourier multipliers and applications to the wave equation, J. Math. Anal. Appl., 353 (2009), 583-591.
doi: 10.1016/j.jmaa.2008.12.027.
|
[16]
|
H. G. Feichtinger, Modulation Spaces on Locally Compact Abelian Group, Technical Report, University of Vienna, 1983.
|
[17]
|
K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, 2001.
doi: 10.1007/978-1-4612-0003-1.
|
[18]
|
A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004 (2004), 3287-3308.
doi: 10.1155/S1073792804140981.
|
[19]
|
B. Guo and Y. P. Wu, Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, Journal of Differential Equations, 123 (1994), 35-55.
doi: 10.1006/jdeq.1995.1156.
|
[20]
|
A. Grünrock, Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005 (2005), 2525-2558.
doi: 10.1155/IMRN.2005.2525.
|
[21]
|
S. M. Guo, On the 1D cubic nonlinear Schrödinger equation in an almost critical space, J. Fourier Annl. Appl., 23 (2017), 91-124.
doi: 10.1007/s00041-016-9464-z.
|
[22]
|
Z. Guo and Y. Wu, Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{1/2}$, Discrete and Continuous Dynamical Systems, 37 (2017), 257-264.
doi: 10.3934/dcds.2017010.
|
[23]
|
M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002.
|
[24]
|
J. S. Han and B. X. Wang, $\alpha$-Modulation spaces (Ⅰ) scaling, embedding and algebraic properties, J. Math. Soc. Japan, 66 (2014), 1315-1373.
doi: 10.2969/jmsj/06641315.
|
[25]
|
N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., 20 (1993), 823-833.
doi: 10.1016/0362-546X(93)90071-Y.
|
[26]
|
N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Phys. D, 55 (1992), 14-36.
doi: 10.1016/0167-2789(92)90185-P.
|
[27]
|
N. Hayashi and T. Ozawa, Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488-1503.
doi: 10.1137/S0036141093246129.
|
[28]
|
N. Hayashi and T. Ozawa, Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations, 7 (1994), 453-461.
|
[29]
|
T. Iwabuchi, Navier-Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differential Equations, 248 (2010), 1972-2002.
doi: 10.1016/j.jde.2009.08.013.
|
[30]
|
K. Kato, M. Kobayashi and S. Ito, Representation on Schrödinger operator of a free partical via short time Fourier transform and its applications, Tohoku Math. J., 64 (2012), 223-231.
doi: 10.2748/tmj/1341249372.
|
[31]
|
K. Kato, M. Kobayashi and S. Ito, Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials, J. Funct. Anal., 266 (2014), 733-753.
doi: 10.1016/j.jfa.2013.08.017.
|
[32]
|
T. Kato, The global Cauchy problems for the nonlinear dispersive equations on modulation spaces, J. Math. Anal. Appl., 413 (2014), 821-840.
doi: 10.1016/j.jmaa.2013.12.022.
|
[33]
|
H. Koch and D. Tataru, Dispersive estimates for principlally normal pseudo-differential operators, Comm. Pure Appl. Math., 58 (2005), 217-284.
doi: 10.1002/cpa.20067.
|
[34]
|
H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007 (2007), Art. ID rnm053, 36 pp.
doi: 10.1093/imrn/rnm053.
|
[35]
|
H. Koch and D. Tataru, Energy and local energy bounds for the 1D cubic NLS equation in $H^{1/4}$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 955-988.
doi: 10.1016/j.anihpc.2012.05.006.
|
[36]
|
S. Kwon and Y. Wu, Orbital stability of solitary waves for derivative nonlinear Schrödinger equation, Journal d'Analyse Mathématique, 135 (2018), 473-486.
doi: 10.1007/s11854-018-0038-7.
|
[37]
|
W. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger for Alfven waves propagating along the magnetic field in cold plasma, Journal of the Physical Society of Japan, 41 (1976), 265-271.
doi: 10.1143/JPSJ.41.265.
|
[38]
|
E. Mjolhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, Journal of Plasma Physics, 16 (1976), 321-334.
doi: 10.1017/S0022377800020249.
|
[39]
|
T. Oh and Y. Wang, Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differential Equations, 269 (2020), 612-640.
doi: 10.1016/j.jde.2019.12.017.
|
[40]
|
T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations, 11 (1998), 201-222.
|
[41]
|
M. Ruzhansky, B. X. Wang and H. Zhang, Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces, J. Math. Pures Appl., 105 (2016), 31-65.
doi: 10.1016/j.matpur.2015.09.005.
|
[42]
|
M. Sugimoto and N. Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., 248 (2007), 79-106.
doi: 10.1016/j.jfa.2007.03.015.
|
[43]
|
M. Sugimoto, B. X. Wang and R. R. Zhang, Local well-posedness for the Davey–Stewartson equation in a generalized Feichtinger algebra, J. Fourier Anal. Appl., 21 (2015), 1105-1129.
doi: 10.1007/s00041-015-9400-7.
|
[44]
|
H. Takaoka, Well-posedness for the one-dimensional nonlinear Schrödinger equationwith the derivative nonlinearity, Adv. Differential Equations, 4 (1999), 561-580.
|
[45]
|
H. Tribel, Theory of Function Spaces, Birkhäuser-Verlag, 1983.
doi: 10.1007/978-3-0346-0416-1.
|
[46]
|
J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus, I, J. Funct. Anal., 207 (2004), 399-429.
doi: 10.1016/j.jfa.2003.10.003.
|
[47]
|
B.X. Wang, Globally well and ill posedness for non-elliptic derivative Schrödinger equations with small rough data, J. Funct. Anal., 265 (2013), 3009-3052.
doi: 10.1016/j.jfa.2013.08.009.
|
[48]
|
B. X. Wang, L. J. Han and C. Y. Huang, Global smooth effects and well-posedness for the derivative nonlinear Schrödinger equaton with small rough data, Ann. Inst H. Poincare, AN, 26 (2009), 2253-2281.
doi: 10.1016/j.anihpc.2009.03.004.
|
[49]
|
B. X. Wang and C. Y. Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differential Equations, 239 (2007), 213-250.
doi: 10.1016/j.jde.2007.04.009.
|
[50]
|
B. X. Wang, Z. H. Huo, C. C. Hao and Z. H. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ, 2011.
doi: 10.1142/9789814360746.
|
[51]
|
B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Diff. Eqns., 232 (2007), 36-73.
doi: 10.1016/j.jde.2006.09.004.
|
[52]
|
B. X. Wang, L. F. Zhao and B. L. Guo, Isometric decomposition operators, function spaces $E^{\lambda}_{p, q}$ and applications to nonlinear evolution operators, J. Funct. Anal., 233 (2006), 1-39.
doi: 10.1016/j.jfa.2005.06.018.
|