September  2021, 41(9): 4297-4318. doi: 10.3934/dcds.2021037

Supercritical elliptic problems involving a Cordes like operator

University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Received  August 2019 Revised  November 2020 Published  September 2021 Early access  March 2021

Fund Project: The first author is supported by NSERC Discovery Grant

In this work we obtain positive bounded solutions of various perturbations of
$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u - \gamma \sum_{i, j = 1}^N \frac{x_i x_j}{|x|^2} u_{x_i x_j} & = & u^p \qquad \mbox{ in } B_1, \\ \hfill u & = & 0 \hfill\qquad\ \mbox{ on } \partial B_1, \end{array}\right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ (1) $
where
$ B_1 $
is the unit ball in
$ {{\mathbb{R}}}^N $
where
$ N \ge 3 $
,
$ \gamma>0 $
and
$ 1<p<p_{N, \gamma} $
where
$ \begin{equation*} p_{N, \gamma}: = \left\{ \begin{array}{lc} \frac{N+2+3 \gamma}{N-2-\gamma} & \qquad \mbox{ if } \gamma<N-2, \\ \infty & \qquad \mbox{ if } \gamma \ge N-2. \end{array}\right. \end{equation*} $
Note for
$ \gamma>0 $
this allows for supercritical range of
$ p $
.
Citation: Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037
References:
[1]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[3]

M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.  doi: 10.1007/BF02413544.  Google Scholar

[4]

M. ClappM. Grossi and A. Pistoia, Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.  doi: 10.1080/17476931003628265.  Google Scholar

[5]

H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166.   Google Scholar

[6]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212.   Google Scholar

[7]

L. DamascelliM. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.  doi: 10.1016/S0294-1449(99)80030-4.  Google Scholar

[8]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[9]

M. del Pino, Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.  doi: 10.3934/dcds.2008.21.69.  Google Scholar

[10]

M. del PinoP. Felmer and Mo nica Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[11]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar

[12]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108.   Google Scholar

[13]

G. Di FazioD. I. Hakim and Y. Sawano, Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.  doi: 10.1007/s40879-017-0168-y.  Google Scholar

[14]

B. GidasW. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[15]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[16]

F. Gladiali and M. Grossi, Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.  doi: 10.1016/j.jde.2012.07.006.  Google Scholar

[17]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.  Google Scholar

[18]

M. Hieber and I. Wood, The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734.   Google Scholar

[19]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp. doi: 10.1142/8308.  Google Scholar

[20]

C. S. Lin and W. M. NI, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.  doi: 10.1090/S0002-9939-1988-0920985-9.  Google Scholar

[21]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[22]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar

[23]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[24]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[25]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[26]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.  doi: 10.1007/BF02414375.  Google Scholar

[27]

G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376.   Google Scholar

[28]

K. Wang and J. Wei, Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.  doi: 10.1093/imrn/rnu013.  Google Scholar

show all references

References:
[1]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[3]

M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.  doi: 10.1007/BF02413544.  Google Scholar

[4]

M. ClappM. Grossi and A. Pistoia, Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.  doi: 10.1080/17476931003628265.  Google Scholar

[5]

H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166.   Google Scholar

[6]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212.   Google Scholar

[7]

L. DamascelliM. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.  doi: 10.1016/S0294-1449(99)80030-4.  Google Scholar

[8]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.  Google Scholar

[9]

M. del Pino, Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.  doi: 10.3934/dcds.2008.21.69.  Google Scholar

[10]

M. del PinoP. Felmer and Mo nica Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.  doi: 10.1007/s005260100142.  Google Scholar

[11]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.  Google Scholar

[12]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108.   Google Scholar

[13]

G. Di FazioD. I. Hakim and Y. Sawano, Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.  doi: 10.1007/s40879-017-0168-y.  Google Scholar

[14]

B. GidasW. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[15]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[16]

F. Gladiali and M. Grossi, Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.  doi: 10.1016/j.jde.2012.07.006.  Google Scholar

[17]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.  Google Scholar

[18]

M. Hieber and I. Wood, The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734.   Google Scholar

[19]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp. doi: 10.1142/8308.  Google Scholar

[20]

C. S. Lin and W. M. NI, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.  doi: 10.1090/S0002-9939-1988-0920985-9.  Google Scholar

[21]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000. doi: 10.1002/3527600868.  Google Scholar

[22]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.  Google Scholar

[23]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.  Google Scholar

[24]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411.   Google Scholar

[25]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar

[26]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.  doi: 10.1007/BF02414375.  Google Scholar

[27]

G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376.   Google Scholar

[28]

K. Wang and J. Wei, Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.  doi: 10.1093/imrn/rnu013.  Google Scholar

[1]

Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69

[2]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[3]

Yessine Dammak. Blowing-up solutions for a supercritical elliptic equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021191

[4]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[5]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[6]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[7]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[8]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[9]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006

[10]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[11]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[12]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure & Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[13]

Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507

[14]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[15]

Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144

[16]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[17]

Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126

[18]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021187

[19]

Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2993-3015. doi: 10.3934/dcdss.2021033

[20]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (128)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]