-
Previous Article
PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video
- DCDS Home
- This Issue
-
Next Article
On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
Supercritical elliptic problems involving a Cordes like operator
University of Manitoba, Winnipeg, MB, R3T 2N2, Canada |
$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u - \gamma \sum_{i, j = 1}^N \frac{x_i x_j}{|x|^2} u_{x_i x_j} & = & u^p \qquad \mbox{ in } B_1, \\ \hfill u & = & 0 \hfill\qquad\ \mbox{ on } \partial B_1, \end{array}\right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ (1) $ |
$ B_1 $ |
$ {{\mathbb{R}}}^N $ |
$ N \ge 3 $ |
$ \gamma>0 $ |
$ 1<p<p_{N, \gamma} $ |
$ \begin{equation*} p_{N, \gamma}: = \left\{ \begin{array}{lc} \frac{N+2+3 \gamma}{N-2-\gamma} & \qquad \mbox{ if } \gamma<N-2, \\ \infty & \qquad \mbox{ if } \gamma \ge N-2. \end{array}\right. \end{equation*} $ |
$ \gamma>0 $ |
$ p $ |
References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[2] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[3] |
M. Chicco,
Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.
doi: 10.1007/BF02413544. |
[4] |
M. Clapp, M. Grossi and A. Pistoia,
Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.
doi: 10.1080/17476931003628265. |
[5] |
H. O. Cordes,
Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166.
|
[6] |
J. M. Coron,
Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212.
|
[7] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[8] |
J. Dávila and L. Dupaigne,
Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.
doi: 10.1142/S0219199707002575. |
[9] |
M. del Pino,
Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.
doi: 10.3934/dcds.2008.21.69. |
[10] |
M. del Pino, P. Felmer and Mo nica Musso,
Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[11] |
M. del Pino, P. Felmer and M. Musso,
Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.
doi: 10.1112/S0024609303001942. |
[12] |
M. del Pino and M. Musso,
Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108.
|
[13] |
G. Di Fazio, D. I. Hakim and Y. Sawano,
Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.
doi: 10.1007/s40879-017-0168-y. |
[14] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[15] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[16] |
F. Gladiali and M. Grossi,
Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.
doi: 10.1016/j.jde.2012.07.006. |
[17] |
M. Grossi and F. Takahashi,
Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.
doi: 10.1016/j.jfa.2010.03.008. |
[18] |
M. Hieber and I. Wood,
The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734.
|
[19] |
P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp.
doi: 10.1142/8308. |
[20] |
C. S. Lin and W. M. NI,
A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.
doi: 10.1090/S0002-9939-1988-0920985-9. |
[21] |
A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000.
doi: 10.1002/3527600868. |
[22] |
R. Mazzeo and F. Pacard,
A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.
doi: 10.4310/jdg/1214458975. |
[23] |
D. Passaseo,
Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[24] |
S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. Google Scholar |
[25] |
M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990.
doi: 10.1007/978-3-662-02624-3. |
[26] |
G. Talenti,
Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.
doi: 10.1007/BF02414375. |
[27] |
G. Talenti,
Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376.
|
[28] |
K. Wang and J. Wei,
Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.
doi: 10.1093/imrn/rnu013. |
show all references
References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[2] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[3] |
M. Chicco,
Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.
doi: 10.1007/BF02413544. |
[4] |
M. Clapp, M. Grossi and A. Pistoia,
Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.
doi: 10.1080/17476931003628265. |
[5] |
H. O. Cordes,
Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166.
|
[6] |
J. M. Coron,
Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212.
|
[7] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[8] |
J. Dávila and L. Dupaigne,
Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.
doi: 10.1142/S0219199707002575. |
[9] |
M. del Pino,
Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.
doi: 10.3934/dcds.2008.21.69. |
[10] |
M. del Pino, P. Felmer and Mo nica Musso,
Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.
doi: 10.1007/s005260100142. |
[11] |
M. del Pino, P. Felmer and M. Musso,
Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.
doi: 10.1112/S0024609303001942. |
[12] |
M. del Pino and M. Musso,
Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108.
|
[13] |
G. Di Fazio, D. I. Hakim and Y. Sawano,
Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.
doi: 10.1007/s40879-017-0168-y. |
[14] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125. |
[15] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[16] |
F. Gladiali and M. Grossi,
Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.
doi: 10.1016/j.jde.2012.07.006. |
[17] |
M. Grossi and F. Takahashi,
Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.
doi: 10.1016/j.jfa.2010.03.008. |
[18] |
M. Hieber and I. Wood,
The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734.
|
[19] |
P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp.
doi: 10.1142/8308. |
[20] |
C. S. Lin and W. M. NI,
A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.
doi: 10.1090/S0002-9939-1988-0920985-9. |
[21] |
A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000.
doi: 10.1002/3527600868. |
[22] |
R. Mazzeo and F. Pacard,
A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.
doi: 10.4310/jdg/1214458975. |
[23] |
D. Passaseo,
Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.
doi: 10.1006/jfan.1993.1064. |
[24] |
S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. Google Scholar |
[25] |
M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990.
doi: 10.1007/978-3-662-02624-3. |
[26] |
G. Talenti,
Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.
doi: 10.1007/BF02414375. |
[27] |
G. Talenti,
Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376.
|
[28] |
K. Wang and J. Wei,
Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.
doi: 10.1093/imrn/rnu013. |
[1] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[2] |
Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021033 |
[3] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[4] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[5] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[6] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[7] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026 |
[8] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[9] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[10] |
Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061 |
[11] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[12] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[13] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[14] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[15] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[16] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[17] |
Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021043 |
[18] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[19] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[20] |
Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]