doi: 10.3934/dcds.2021038

Permutations with restricted movement

School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

Received  January 2020 Revised  October 2020 Published  March 2021

Fund Project: This work was supported by the Israel Science Foundation (ISF) under grant No. 270/18 and 1052/18

A restricted permutation of a locally finite directed graph $ G = (V, E) $ is a vertex permutation $ \pi: V\to V $ for which $ (v, \pi(v))\in E $, for any vertex $ v\in V $. The set of such permutations, denoted by $ \Omega(G) $, with a group action induced from a subset of graph isomorphisms form a topological dynamical system. We focus on the particular case presented by Schmidt and Strasser [18] of restricted $ {\mathbb Z}^d $ permutations, in which $ \Omega(G) $ is a subshift of finite type. We show a correspondence between restricted permutations and perfect matchings (also known as dimer coverings). We use this correspondence in order to investigate and compute the topological entropy in a class of cases of restricted $ {\mathbb Z}^d $-permutations. We discuss the global and local admissibility of patterns, in the context of restricted $ {\mathbb Z}^d $-permutations. Finally, we review the related models of injective and surjective restricted functions.

Citation: Dor Elimelech. Permutations with restricted movement. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021038
References:
[1]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb{Z}^d$-systems via specification and beyond, preprint, arXiv: 1903.05716. Google Scholar

[2]

H. CohnR. Kenyon and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc., 14 (2001), 297-346.  doi: 10.1090/S0894-0347-00-00355-6.  Google Scholar

[3]

M. Einsiedler and T. Ward, Ergodic Theory, Springer, 2013. doi: 10.1007/978-0-85729-021-2.  Google Scholar

[4]

D. Elimelech, Permutations with Restricted Movement, M.Sc Thesis, Ben-Gurion University, 2019, arXiv: 1911.02233. Google Scholar

[5]

M. E. Fisher, Statistical mechanics of dimers on plane lattice, Phys. Rev., 124 (1961), 1664-1672.  doi: 10.1103/PhysRev.124.1664.  Google Scholar

[6]

M. E. Fisher, On the dimer solution of planar Ising models, J. of Math. Phys., 7 (1966), 1776-1781.  doi: 10.1063/1.1704825.  Google Scholar

[7]

M. Hochman and T. Meyerovich, A characterization of the entropies of multidimensional shifts of finite type, Annals of Math., 171 (2010), 2011-2038.  doi: 10.4007/annals.2010.171.2011.  Google Scholar

[8]

P. W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.   Google Scholar

[9]

P. W. Kasteleyn, Dimer statistics and phase transitions, Journal of Mathematical Physics, 4 (1963), 287-293.  doi: 10.1063/1.1703953.  Google Scholar

[10]

R. Kenyon, The planar dimer model with boundary: A survey, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13 (2000), 307-328.   Google Scholar

[11]

R. KenyonA. Okounkov and S. Sheffield, Dimers and amoebae, Annals of Math., 163 (2006), 1019-1056.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[12]

D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Inventiones Mathematicae, 186 (2011), 501-558.  doi: 10.1007/s00222-011-0324-9.  Google Scholar

[13] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Inventiones Mathematicae, 146 (2001), 259-295.  doi: 10.1007/s002220100162.  Google Scholar

[15]

M. Misiurewicz, A short proof of the variational principle for a $\mathbb{Z}^N$ action on a compact space, Asterisque, 40 (1976), 147-157.   Google Scholar

[16]

R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae, 12 (1971), 177-209.  doi: 10.1007/BF01418780.  Google Scholar

[17]

K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser/Springer Basel AG, Basel, 1995.  Google Scholar

[18]

K. Schmidt and G. Strasser, Permutations of $\mathbb{Z}^d$ with restricted movement, Studia Mathematica, 235 (2016), 137-170.  doi: 10.4064/sm8498-8-2016.  Google Scholar

[19]

M. Schwartz and J. Bruck, Constrained codes as networks of relations, IEEE Trans. Inform. Theory, 54 (2008), 2179-2195.  doi: 10.1109/TIT.2008.920245.  Google Scholar

[20]

H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics–an exact result, Phil. Mag., 6 (1960), 1061-1063.  doi: 10.1080/14786436108243366.  Google Scholar

show all references

References:
[1]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb{Z}^d$-systems via specification and beyond, preprint, arXiv: 1903.05716. Google Scholar

[2]

H. CohnR. Kenyon and J. Propp, A variational principle for domino tilings, J. Amer. Math. Soc., 14 (2001), 297-346.  doi: 10.1090/S0894-0347-00-00355-6.  Google Scholar

[3]

M. Einsiedler and T. Ward, Ergodic Theory, Springer, 2013. doi: 10.1007/978-0-85729-021-2.  Google Scholar

[4]

D. Elimelech, Permutations with Restricted Movement, M.Sc Thesis, Ben-Gurion University, 2019, arXiv: 1911.02233. Google Scholar

[5]

M. E. Fisher, Statistical mechanics of dimers on plane lattice, Phys. Rev., 124 (1961), 1664-1672.  doi: 10.1103/PhysRev.124.1664.  Google Scholar

[6]

M. E. Fisher, On the dimer solution of planar Ising models, J. of Math. Phys., 7 (1966), 1776-1781.  doi: 10.1063/1.1704825.  Google Scholar

[7]

M. Hochman and T. Meyerovich, A characterization of the entropies of multidimensional shifts of finite type, Annals of Math., 171 (2010), 2011-2038.  doi: 10.4007/annals.2010.171.2011.  Google Scholar

[8]

P. W. Kasteleyn, The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice, Physica, 27 (1961), 1209-1225.   Google Scholar

[9]

P. W. Kasteleyn, Dimer statistics and phase transitions, Journal of Mathematical Physics, 4 (1963), 287-293.  doi: 10.1063/1.1703953.  Google Scholar

[10]

R. Kenyon, The planar dimer model with boundary: A survey, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13 (2000), 307-328.   Google Scholar

[11]

R. KenyonA. Okounkov and S. Sheffield, Dimers and amoebae, Annals of Math., 163 (2006), 1019-1056.  doi: 10.4007/annals.2006.163.1019.  Google Scholar

[12]

D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Inventiones Mathematicae, 186 (2011), 501-558.  doi: 10.1007/s00222-011-0324-9.  Google Scholar

[13] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[14]

E. Lindenstrauss, Pointwise theorems for amenable groups, Inventiones Mathematicae, 146 (2001), 259-295.  doi: 10.1007/s002220100162.  Google Scholar

[15]

M. Misiurewicz, A short proof of the variational principle for a $\mathbb{Z}^N$ action on a compact space, Asterisque, 40 (1976), 147-157.   Google Scholar

[16]

R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inventiones Mathematicae, 12 (1971), 177-209.  doi: 10.1007/BF01418780.  Google Scholar

[17]

K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser/Springer Basel AG, Basel, 1995.  Google Scholar

[18]

K. Schmidt and G. Strasser, Permutations of $\mathbb{Z}^d$ with restricted movement, Studia Mathematica, 235 (2016), 137-170.  doi: 10.4064/sm8498-8-2016.  Google Scholar

[19]

M. Schwartz and J. Bruck, Constrained codes as networks of relations, IEEE Trans. Inform. Theory, 54 (2008), 2179-2195.  doi: 10.1109/TIT.2008.920245.  Google Scholar

[20]

H. N. V. Temperley and M. E. Fisher, Dimer problem in statistical mechanics–an exact result, Phil. Mag., 6 (1960), 1061-1063.  doi: 10.1080/14786436108243366.  Google Scholar

Figure 2.1.  (a) The two-dimensional honeycomb lattice. (b) The fundamental domain
Figure 2.2.  (a) Paths configuration corresponding to an elements in $ \Omega(G_{A_L}) $. (b) Paths configuration corresponding to an elements in $ \Omega(G_{A_+}) $
Figure 2.3.  The graphs corresponding to $ A_+ $ and $ A_L $
Figure 3.1.  The graph $ G_{A_L}' $
Figure 3.2.  The quotient of $ L_{H} $ by the action of $ (2 {\mathbb Z})^2 $
Figure 3.3.  A correspondence between a function in $ B_{3, 3}(A_L) $ and a perfect cover of $ \hat{V}_{3, 3} $ in $ G_{A_L} $
Figure 3.4.  (a) The $ T $-gadget and the weights on its edges. (b) The construction of $ \hat{G} $ from $ G $
Figure 3.5.  The correspondence between a restricted permutation of the honeycomb lattice, perfect matchings and permutations of $ {\mathbb Z}^2 $ restricted by $ A_L $
Figure 3.6.  The corresponding graph for $ G_{A_+} $ from Theorem 1. Black points represent vertices of the form $ (I, n) $ and white points represent vertices of the form $ (O, n) $
Figure 4.1.  A locally admissible pattern which is not globally admissible where the restricting set is $ A_+ $
Figure 4.2.  The extension of $ \pi_v $ to a $ \pi\in \Omega(A_\oplus) $
[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[2]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[5]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[6]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[7]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[8]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[9]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017

[10]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[11]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[14]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[15]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[16]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[17]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[18]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[19]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[20]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]