[1]
|
G. Abebe and A. Cavallaro, A long short-term memory convolutional neural network for first-person vision activity recognition, in Proceedings of the IEEE International Conference on Computer Vision, 2017, 1339–1346.
doi: 10.1109/ICCVW.2017.159.
|
[2]
|
K. Aizawa, K. Ishijima and M. Shiina, Summarizing wearable video, in Proceedings to 2001 International Conference on Image Processing, vol. 3, IEEE, 2001,398–401.
doi: 10.1109/ICIP.2001.958135.
|
[3]
|
J. L. Barron, D. J. Fleet and S. S. Beauchemin, Performance of optical flow techniques, International Journal of Computer Vision, 12 (1994), 43-77.
|
[4]
|
A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, SIAM Review, 58 (2016), 293-328.
doi: 10.1137/16M1070426.
|
[5]
|
A. L. Bertozzi, X. Luo, A. M. Stuart and K. C. Zygalakis, Uncertainty quantification in graph-based classification of high dimensional data, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), 568-595.
doi: 10.1137/17M1134214.
|
[6]
|
B. L. Bhatnagar, S. Singh, C. Arora, C. Jawahar and K. CVIT, Unsupervised learning of deep feature representation for clustering egocentric actions, in IJCAI, 2017, 1447–1453.
doi: 10.24963/ijcai.2017/200.
|
[7]
|
J. Budd and Y. V. Gennip, Graph Merriman–Bence–Osher as a semi-discrete implicit euler scheme for graph Allen–Cahn flow, SIAM Journal on Mathematical Analysis, 52 (2020), 4101-4139.
doi: 10.1137/19M1277394.
|
[8]
|
T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on image processing, 10 (2001), 266-277.
doi: 10.1109/83.902291.
|
[9]
|
A. G. del Molino, C. Tan, J.-H. Lim and A.-H. Tan, Summarization of egocentric videos: a comprehensive survey, IEEE Transactions on Human-Machine Systems, 47 (2017), 65-76.
doi: 10.1109/THMS.2016.2623480.
|
[10]
|
G. Farnebäck, Two-frame motion estimation based on polynomial expansion, in Scandinavian Conference on Image Analysis, Springer, 2003,363–370.
|
[11]
|
A. Fathi, J. K. Hodgins and J. M. Rehg, Social interactions: A first-person perspective,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 1226–1233.
doi: 10.1109/CVPR.2012.6247805.
|
[12]
|
A. Fathi, A. Farhadi and J. M. Rehg, Understanding egocentric activities, in Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE, 2011,407–414.
doi: 10.1109/ICCV.2011.6126269.
|
[13]
|
A. Fathi, Y. Li and J. M. Rehg, Learning to recognize daily actions using gaze, in European Conference on Computer Vision, Springer, 2012,314–327.
doi: 10.1007/978-3-642-33718-5_23.
|
[14]
|
D. Fortun, P. Bouthemy and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, 134 (2015), 1-21.
doi: 10.1016/j.cviu.2015.02.008.
|
[15]
|
C. Fowlkes, S. Belongie, F. Chung and J. Malik, Spectral grouping using the Nyström method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 214-225.
doi: 10.1109/TPAMI.2004.1262185.
|
[16]
|
C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner and A. G. Percus, Multiclass data segmentation using diffuse interface methods on graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (2014), 1600-1613.
doi: 10.1109/TPAMI.2014.2300478.
|
[17]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[18]
|
B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.
doi: 10.1016/0004-3702(81)90024-2.
|
[19]
|
G. Iyer, J. Chanussot and A. L. Bertozzi, A graph-based approach for feature extraction and segmentation of multimodal images,, in 2017 IEEE International Conference on Image Processing (ICIP), IEEE, 2017, 3320–3324.
doi: 10.1109/ICIP.2017.8296897.
|
[20]
|
M. Jacobs, E. Merkurjev and S. Esedoglu, Auction dynamics: A volume constrained MBO scheme, Journal of Computational Physics, 354 (2018), 288-310.
doi: 10.1016/j.jcp.2017.10.036.
|
[21]
|
K. M. Kitani, T. Okabe, Y. Sato and A. Sugimoto, Fast unsupervised ego-action learning for first-person sports videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, 3241–3248.
doi: 10.1109/CVPR.2011.5995406.
|
[22]
|
C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA, 1995.
doi: 10.1137/1.9781611971217.
|
[23]
|
D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems, 2001,556–562.
|
[24]
|
Y. Li, Z. Ye and J. M. Rehg, Delving into egocentric actions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,287–295.
doi: 10.1109/CVPR.2015.7298625.
|
[25]
|
B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of the 1981 DARPA Image Understanding Workshop, 1981,121–130.
|
[26]
|
X. Luo and A. L. Bertozzi, Convergence of the graph Allen–Cahn scheme, Journal of Statistical Physics, 167 (2017), 934-958.
doi: 10.1007/s10955-017-1772-4.
|
[27]
|
M. Ma, H. Fan and K. M. Kitani, Going deeper into first-person activity recognition,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 1894–1903.
doi: 10.1109/CVPR.2016.209.
|
[28]
|
Z. Meng, A. Koniges, Y. H. He, S. Williams, T. Kurth, B. Cook, J. Deslippe and A. L. Bertozzi, OpenMP parallelization and optimization of graph-based machine learning algorithms,, in International Workshop on OpenMP, Springer, 2016, 17–31.
doi: 10.1007/978-3-319-45550-1_2.
|
[29]
|
Z. Meng, E. Merkurjev, A. Koniges and A. L. Bertozzi, Hyperspectral image classification using graph clustering methods, Image Processing On Line, 7 (2017), 218-245.
doi: 10.5201/ipol.2017.204.
|
[30]
|
Z. Meng, J. Sánchez, J.-M. Morel, A. L. Bertozzi and P. J. Brantingham, Ego-motion classification for body-worn videos,, in Imaging, Vision and Learning Based on Optimization and PDEs (eds. X.-C. Tai, E. Bae and M. Lysaker), Springer International Publishing, Cham, 2018,221–239.
doi: 10.1007/978-3-319-91274-5_10.
|
[31]
|
E. Merkurjev, C. Garcia-Cardona, A. L. Bertozzi, A. Flenner and A. G. Percus, Diffuse interface methods for multiclass segmentation of high-dimensional data, Applied Mathematics Letters, 33 (2014), 29-34.
doi: 10.1016/j.aml.2014.02.008.
|
[32]
|
E. Merkurjev, T. Kostic and A. L. Bertozzi, An MBO scheme on graphs for classification and image processing, SIAM Journal on Imaging Sciences, 6 (2013), 1903-1930.
doi: 10.1137/120886935.
|
[33]
|
E. Merkurjev, J. Sunu and A. L. Bertozzi, Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video,, in Image Processing (ICIP), 2014 IEEE International Conference on, IEEE, 2014,689–693.
doi: 10.1109/ICIP.2014.7025138.
|
[34]
|
F. Özkan, M. A. Arabaci, E. Surer and A. Temizel, Boosted multiple kernel learning for first-person activity recognition, in Signal Processing Conference (EUSIPCO), 2017 25th European, IEEE, 2017, 1050–1054.
|
[35]
|
H. Pirsiavash and D. Ramanan, Detecting activities of daily living in first-person camera views,, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, 2847–2854.
doi: 10.1109/CVPR.2012.6248010.
|
[36]
|
Y. Poleg, C. Arora and S. Peleg, Temporal segmentation of egocentric videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 2537–2544.
doi: 10.1109/CVPR.2014.325.
|
[37]
|
Y. Poleg, A. Ephrat, S. Peleg and C. Arora, Compact CNN for indexing egocentric videos, in Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on, IEEE, 2016, 1–9.
|
[38]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[39]
|
M. S. Ryoo and L. Matthies, First-person activity recognition: What are they doing to me?, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 2730–2737.
|
[40]
|
M. S. Ryoo, B. Rothrock and L. Matthies, Pooled motion features for first-person videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,896–904.
doi: 10.1109/CVPR.2015.7298691.
|
[41]
|
S. Singh, C. Arora and C. Jawahar, Trajectory aligned features for first person action recognition, Pattern Recognition, 62 (2017), 45-55.
doi: 10.1016/j.patcog.2016.07.031.
|
[42]
|
E. H. Spriggs, F. De La Torre and M. Hebert, Temporal segmentation and activity classification from first-person sensing,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, 17–24.
doi: 10.1109/CVPRW.2009.5204354.
|
[43]
|
D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri, Learning spatiotemporal features with 3D convolutional networks, in Computer Vision (ICCV), 2015 IEEE International Conference on, IEEE, 2015, 4489–4497.
|
[44]
|
Y. Van Gennip and A. L. Bertozzi et al., $\Gamma$-convergence of graph Ginzburg-Landau functionals, Advances in Differential Equations, 17 (2012), 1115-1180.
|
[45]
|
Y. Van Gennip, N. Guillen, B. Osting and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan Journal of Mathematics, 82 (2014), 3-65.
doi: 10.1007/s00032-014-0216-8.
|
[46]
|
X. Wang, L. Gao, J. Song, X. Zhen, N. Sebe and H. T. Shen, Deep appearance and motion learning for egocentric activity recognition, Neurocomputing, 275 (2018), 438-447.
doi: 10.1016/j.neucom.2017.08.063.
|
[47]
|
L. Zelnik-Manor and P. Perona, Self-tuning spectral clustering, in Advances in Neural Information Processing Systems, 2005, 1601–1608.
|
[48]
|
W. Zhu, V. Chayes, A. Tiard, S. Sanchez, D. Dahlberg, A. L. Bertozzi, S. Osher, D. Zosso and D. Kuang, Unsupervised classification in hyperspectral imagery with nonlocal total variation and primal-dual hybrid gradient algorithm, IEEE Transactions on Geoscience and Remote Sensing, 55 (2017), 2786-2798.
doi: 10.1109/TGRS.2017.2654486.
|