[1]

G. Abebe and A. Cavallaro, A long shortterm memory convolutional neural network for firstperson vision activity recognition, in Proceedings of the IEEE International Conference on Computer Vision, 2017, 1339–1346.
doi: 10.1109/ICCVW.2017.159.

[2]

K. Aizawa, K. Ishijima and M. Shiina, Summarizing wearable video, in Proceedings to 2001 International Conference on Image Processing, vol. 3, IEEE, 2001,398–401.
doi: 10.1109/ICIP.2001.958135.

[3]

J. L. Barron, D. J. Fleet and S. S. Beauchemin, Performance of optical flow techniques, International Journal of Computer Vision, 12 (1994), 4377.

[4]

A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data, SIAM Review, 58 (2016), 293328.
doi: 10.1137/16M1070426.

[5]

A. L. Bertozzi, X. Luo, A. M. Stuart and K. C. Zygalakis, Uncertainty quantification in graphbased classification of high dimensional data, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), 568595.
doi: 10.1137/17M1134214.

[6]

B. L. Bhatnagar, S. Singh, C. Arora, C. Jawahar and K. CVIT, Unsupervised learning of deep feature representation for clustering egocentric actions, in IJCAI, 2017, 1447–1453.
doi: 10.24963/ijcai.2017/200.

[7]

J. Budd and Y. V. Gennip, Graph Merriman–Bence–Osher as a semidiscrete implicit euler scheme for graph Allen–Cahn flow, SIAM Journal on Mathematical Analysis, 52 (2020), 41014139.
doi: 10.1137/19M1277394.

[8]

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on image processing, 10 (2001), 266277.
doi: 10.1109/83.902291.

[9]

A. G. del Molino, C. Tan, J.H. Lim and A.H. Tan, Summarization of egocentric videos: a comprehensive survey, IEEE Transactions on HumanMachine Systems, 47 (2017), 6576.
doi: 10.1109/THMS.2016.2623480.

[10]

G. Farnebäck, Twoframe motion estimation based on polynomial expansion, in Scandinavian Conference on Image Analysis, Springer, 2003,363–370.

[11]

A. Fathi, J. K. Hodgins and J. M. Rehg, Social interactions: A firstperson perspective,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, 1226–1233.
doi: 10.1109/CVPR.2012.6247805.

[12]

A. Fathi, A. Farhadi and J. M. Rehg, Understanding egocentric activities, in Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE, 2011,407–414.
doi: 10.1109/ICCV.2011.6126269.

[13]

A. Fathi, Y. Li and J. M. Rehg, Learning to recognize daily actions using gaze, in European Conference on Computer Vision, Springer, 2012,314–327.
doi: 10.1007/9783642337185_23.

[14]

D. Fortun, P. Bouthemy and C. Kervrann, Optical flow modeling and computation: A survey, Computer Vision and Image Understanding, 134 (2015), 121.
doi: 10.1016/j.cviu.2015.02.008.

[15]

C. Fowlkes, S. Belongie, F. Chung and J. Malik, Spectral grouping using the Nyström method, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (2004), 214225.
doi: 10.1109/TPAMI.2004.1262185.

[16]

C. GarciaCardona, E. Merkurjev, A. L. Bertozzi, A. Flenner and A. G. Percus, Multiclass data segmentation using diffuse interface methods on graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (2014), 16001613.
doi: 10.1109/TPAMI.2014.2300478.

[17]

G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7 (2008), 10051028.
doi: 10.1137/070698592.

[18]

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185203.
doi: 10.1016/00043702(81)900242.

[19]

G. Iyer, J. Chanussot and A. L. Bertozzi, A graphbased approach for feature extraction and segmentation of multimodal images,, in 2017 IEEE International Conference on Image Processing (ICIP), IEEE, 2017, 3320–3324.
doi: 10.1109/ICIP.2017.8296897.

[20]

M. Jacobs, E. Merkurjev and S. Esedoglu, Auction dynamics: A volume constrained MBO scheme, Journal of Computational Physics, 354 (2018), 288310.
doi: 10.1016/j.jcp.2017.10.036.

[21]

K. M. Kitani, T. Okabe, Y. Sato and A. Sugimoto, Fast unsupervised egoaction learning for firstperson sports videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, 3241–3248.
doi: 10.1109/CVPR.2011.5995406.

[22]

C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, SIAM, Philadelphia, PA, 1995.
doi: 10.1137/1.9781611971217.

[23]

D. D. Lee and H. S. Seung, Algorithms for nonnegative matrix factorization, in Advances in Neural Information Processing Systems, 2001,556–562.

[24]

Y. Li, Z. Ye and J. M. Rehg, Delving into egocentric actions, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,287–295.
doi: 10.1109/CVPR.2015.7298625.

[25]

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, in Proceedings of the 1981 DARPA Image Understanding Workshop, 1981,121–130.

[26]

X. Luo and A. L. Bertozzi, Convergence of the graph Allen–Cahn scheme, Journal of Statistical Physics, 167 (2017), 934958.
doi: 10.1007/s1095501717724.

[27]

M. Ma, H. Fan and K. M. Kitani, Going deeper into firstperson activity recognition,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 1894–1903.
doi: 10.1109/CVPR.2016.209.

[28]

Z. Meng, A. Koniges, Y. H. He, S. Williams, T. Kurth, B. Cook, J. Deslippe and A. L. Bertozzi, OpenMP parallelization and optimization of graphbased machine learning algorithms,, in International Workshop on OpenMP, Springer, 2016, 17–31.
doi: 10.1007/9783319455501_2.

[29]

Z. Meng, E. Merkurjev, A. Koniges and A. L. Bertozzi, Hyperspectral image classification using graph clustering methods, Image Processing On Line, 7 (2017), 218245.
doi: 10.5201/ipol.2017.204.

[30]

Z. Meng, J. Sánchez, J.M. Morel, A. L. Bertozzi and P. J. Brantingham, Egomotion classification for bodyworn videos,, in Imaging, Vision and Learning Based on Optimization and PDEs (eds. X.C. Tai, E. Bae and M. Lysaker), Springer International Publishing, Cham, 2018,221–239.
doi: 10.1007/9783319912745_10.

[31]

E. Merkurjev, C. GarciaCardona, A. L. Bertozzi, A. Flenner and A. G. Percus, Diffuse interface methods for multiclass segmentation of highdimensional data, Applied Mathematics Letters, 33 (2014), 2934.
doi: 10.1016/j.aml.2014.02.008.

[32]

E. Merkurjev, T. Kostic and A. L. Bertozzi, An MBO scheme on graphs for classification and image processing, SIAM Journal on Imaging Sciences, 6 (2013), 19031930.
doi: 10.1137/120886935.

[33]

E. Merkurjev, J. Sunu and A. L. Bertozzi, Graph MBO method for multiclass segmentation of hyperspectral standoff detection video,, in Image Processing (ICIP), 2014 IEEE International Conference on, IEEE, 2014,689–693.
doi: 10.1109/ICIP.2014.7025138.

[34]

F. Özkan, M. A. Arabaci, E. Surer and A. Temizel, Boosted multiple kernel learning for firstperson activity recognition, in Signal Processing Conference (EUSIPCO), 2017 25th European, IEEE, 2017, 1050–1054.

[35]

H. Pirsiavash and D. Ramanan, Detecting activities of daily living in firstperson camera views,, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, 2012, 2847–2854.
doi: 10.1109/CVPR.2012.6248010.

[36]

Y. Poleg, C. Arora and S. Peleg, Temporal segmentation of egocentric videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 2537–2544.
doi: 10.1109/CVPR.2014.325.

[37]

Y. Poleg, A. Ephrat, S. Peleg and C. Arora, Compact CNN for indexing egocentric videos, in Applications of Computer Vision (WACV), 2016 IEEE Winter Conference on, IEEE, 2016, 1–9.

[38]

L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259268.
doi: 10.1016/01672789(92)90242F.

[39]

M. S. Ryoo and L. Matthies, Firstperson activity recognition: What are they doing to me?, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 2730–2737.

[40]

M. S. Ryoo, B. Rothrock and L. Matthies, Pooled motion features for firstperson videos,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,896–904.
doi: 10.1109/CVPR.2015.7298691.

[41]

S. Singh, C. Arora and C. Jawahar, Trajectory aligned features for first person action recognition, Pattern Recognition, 62 (2017), 4555.
doi: 10.1016/j.patcog.2016.07.031.

[42]

E. H. Spriggs, F. De La Torre and M. Hebert, Temporal segmentation and activity classification from firstperson sensing,, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, 17–24.
doi: 10.1109/CVPRW.2009.5204354.

[43]

D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri, Learning spatiotemporal features with 3D convolutional networks, in Computer Vision (ICCV), 2015 IEEE International Conference on, IEEE, 2015, 4489–4497.

[44]

Y. Van Gennip and A. L. Bertozzi et al., $\Gamma$convergence of graph GinzburgLandau functionals, Advances in Differential Equations, 17 (2012), 11151180.

[45]

Y. Van Gennip, N. Guillen, B. Osting and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs, Milan Journal of Mathematics, 82 (2014), 365.
doi: 10.1007/s0003201402168.

[46]

X. Wang, L. Gao, J. Song, X. Zhen, N. Sebe and H. T. Shen, Deep appearance and motion learning for egocentric activity recognition, Neurocomputing, 275 (2018), 438447.
doi: 10.1016/j.neucom.2017.08.063.

[47]

L. ZelnikManor and P. Perona, Selftuning spectral clustering, in Advances in Neural Information Processing Systems, 2005, 1601–1608.

[48]

W. Zhu, V. Chayes, A. Tiard, S. Sanchez, D. Dahlberg, A. L. Bertozzi, S. Osher, D. Zosso and D. Kuang, Unsupervised classification in hyperspectral imagery with nonlocal total variation and primaldual hybrid gradient algorithm, IEEE Transactions on Geoscience and Remote Sensing, 55 (2017), 27862798.
doi: 10.1109/TGRS.2017.2654486.
