-
Previous Article
Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity
- DCDS Home
- This Issue
-
Next Article
Pointwise gradient bounds for a class of very singular quasilinear elliptic equations
Centralizers of partially hyperbolic diffeomorphisms in dimension 3
1. | Queen's University, Kingston, Ontario |
2. | Ohio State University, Columbus, Ohio |
In this note we describe centralizers of volume preserving partially hyperbolic diffeomorphisms which are homotopic to identity on Seifert fibered and hyperbolic 3-manifolds. Our proof follows the strategy of Damjanovic, Wilkinson and Xu [
References:
[1] |
T. Adachi,
Closed orbits of an Anosov flow and the fundamental group, Proc. Amer. Math. Soc., 100 (1987), 595-598.
doi: 10.1090/S0002-9939-1987-0891171-5. |
[2] |
A. Avila, M. Viana and A. Wilkinson,
Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.
doi: 10.4171/JEMS/534. |
[3] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, lyapunov exponents and rigidity Ⅱ: Systems with compact center leaves, to appear in Erg. Th. Dyn. Syst. (Katok memorial issue), 2019, available at http://www.math.uchicago.edu/ wilkinso/papers/AVW2.pdf |
[4] |
T. Barbot, De l'hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard de Lyon, 2005, available at https://tel.archives-ouvertes.fr/tel-00011278. |
[5] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅰ: The dynamically coherent case, arXiv e-prints (2019), arXiv:1908.06227. |
[6] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅱ: Branching foliations, arXiv e-prints (2020), arXiv:2008.04871. |
[7] |
T. Barthelmé and A. Gogolev, A note on self orbit equivalences of Anosov flows and bundles with fiberwise Anosov flows, MRL, 26 (2019). |
[8] |
M. I. Brin,
Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen, 9 (1975), 9-19.
|
[9] |
K. Burns and A. Wilkinson,
On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.
doi: 10.4007/annals.2010.171.451. |
[10] |
D. Damjanovic, A. Wilkinson and D. Xu, Pathology and asymmetry: Centralizer rigidity for partially hyperbolic diffeomorphisms, To appear in Duke Math. J., (2019), arXiv:1902.05201. |
[11] |
S. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, arXiv e-prints, 2018, arXiv:1809.02284. |
[12] |
A. Hammerlindl and R. Potrie,
Partial hyperbolicity and classification: A survey, Ergodic Theory Dynam. Systems, 38 (2018), 401-443.
doi: 10.1017/etds.2016.50. |
[13] |
S. Hong and D. McCullough, Mapping class groups of 3-manifolds, then and now, Geometry and Topology Down Under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, 53–63.
doi: 10.1090/conm/597/11768. |
[14] |
D. McCullough,
Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., 33 (1991), 1-65.
doi: 10.4310/jdg/1214446029. |
[15] |
J. F. Plante,
Anosov flows, Amer. J. Math., 94 (1972), 729-754.
doi: 10.2307/2373755. |
[16] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), 268pp. |
[17] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures,
Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z. |
show all references
References:
[1] |
T. Adachi,
Closed orbits of an Anosov flow and the fundamental group, Proc. Amer. Math. Soc., 100 (1987), 595-598.
doi: 10.1090/S0002-9939-1987-0891171-5. |
[2] |
A. Avila, M. Viana and A. Wilkinson,
Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.
doi: 10.4171/JEMS/534. |
[3] |
A. Avila, M. Viana and A. Wilkinson, Absolute continuity, lyapunov exponents and rigidity Ⅱ: Systems with compact center leaves, to appear in Erg. Th. Dyn. Syst. (Katok memorial issue), 2019, available at http://www.math.uchicago.edu/ wilkinso/papers/AVW2.pdf |
[4] |
T. Barbot, De l'hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard de Lyon, 2005, available at https://tel.archives-ouvertes.fr/tel-00011278. |
[5] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅰ: The dynamically coherent case, arXiv e-prints (2019), arXiv:1908.06227. |
[6] |
T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅱ: Branching foliations, arXiv e-prints (2020), arXiv:2008.04871. |
[7] |
T. Barthelmé and A. Gogolev, A note on self orbit equivalences of Anosov flows and bundles with fiberwise Anosov flows, MRL, 26 (2019). |
[8] |
M. I. Brin,
Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen, 9 (1975), 9-19.
|
[9] |
K. Burns and A. Wilkinson,
On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.
doi: 10.4007/annals.2010.171.451. |
[10] |
D. Damjanovic, A. Wilkinson and D. Xu, Pathology and asymmetry: Centralizer rigidity for partially hyperbolic diffeomorphisms, To appear in Duke Math. J., (2019), arXiv:1902.05201. |
[11] |
S. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, arXiv e-prints, 2018, arXiv:1809.02284. |
[12] |
A. Hammerlindl and R. Potrie,
Partial hyperbolicity and classification: A survey, Ergodic Theory Dynam. Systems, 38 (2018), 401-443.
doi: 10.1017/etds.2016.50. |
[13] |
S. Hong and D. McCullough, Mapping class groups of 3-manifolds, then and now, Geometry and Topology Down Under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, 53–63.
doi: 10.1090/conm/597/11768. |
[14] |
D. McCullough,
Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., 33 (1991), 1-65.
doi: 10.4310/jdg/1214446029. |
[15] |
J. F. Plante,
Anosov flows, Amer. J. Math., 94 (1972), 729-754.
doi: 10.2307/2373755. |
[16] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), 268pp. |
[17] |
F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures,
Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z. |
[1] |
Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037 |
[2] |
Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419 |
[3] |
Andy Hammerlindl, Rafael Potrie, Mario Shannon. Seifert manifolds admitting partially hyperbolic diffeomorphisms. Journal of Modern Dynamics, 2018, 12: 193-222. doi: 10.3934/jmd.2018008 |
[4] |
Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195 |
[5] |
Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245 |
[6] |
Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469 |
[7] |
Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747 |
[8] |
Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541 |
[9] |
Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75 |
[10] |
Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869 |
[11] |
Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1 |
[12] |
Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565 |
[13] |
Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789 |
[14] |
Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 |
[15] |
Jinhua Zhang. Partially hyperbolic diffeomorphisms with one-dimensional neutral center on 3-manifolds. Journal of Modern Dynamics, 2021, 17: 557-584. doi: 10.3934/jmd.2021019 |
[16] |
Christian Bonatti, Sylvain Crovisier, Amie Wilkinson. $C^1$-generic conservative diffeomorphisms have trivial centralizer. Journal of Modern Dynamics, 2008, 2 (2) : 359-373. doi: 10.3934/jmd.2008.2.359 |
[17] |
Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435 |
[18] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271 |
[19] |
Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68 |
[20] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]