doi: 10.3934/dcds.2021045

Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity

1. 

Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Câmpus de Rio Claro, Avenida 24-A, 1515, Bela Vista, Rio Claro, São Paulo, 13506-900, Brazil

2. 

Centro de Ciências Exatas e Tecnologia - UFMA, Av. dos Portugueses, 1966, Bacanga, 65080-805, São Luís, Brazil

3. 

*Instituto de Matemática - Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21945-909, Brazil

* Corresponding author: jaqueline@im.ufrj.br

Received  July 2020 Revised  December 2020 Published  March 2021

Fund Project: The authors were supported by grant 2017/08732-1, São Paulo Research Foundation (FAPESP). VR was supported by grant Universal-01309/17, FAPEMA-Brazil. JS was supported by grant Universal-430154/2018-6, CNPq-Brazil

We consider a wide family of non-uniformly expanding maps and hyperbolic Hölder continuous potentials. We prove that the unique equilibrium state associated to each element of this family is given by the eigenfunction of the transfer operator and the eigenmeasure of the dual operator (both having the spectral radius as eigenvalue). We show that the transfer operator has the spectral gap property in some space of Hölder continuous observables and from this we obtain an exponential decay of correlations and a central limit theorem for the equilibrium state. Moreover, we establish the analyticity with respect to the potential of the equilibrium state as well as that of other thermodynamic quantities. Furthermore, we derive similar results for the equilibrium state associated to a family of non-uniformly hyperbolic skew products and hyperbolic Hölder continuous potentials.

Citation: Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021045
References:
[1]

J. F. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Inventiones Mathematicae, 140 (2000), 351-398.  doi: 10.1007/s002220000057.  Google Scholar

[2]

J. F. AlvesV. Ramos and J. Siqueira, Equilibrium stability for non-uniformly hyperbolic systems, Ergodic Theory and Dynamical Systems, 39 (2019), 2619-2642.  doi: 10.1017/etds.2017.138.  Google Scholar

[3]

A. ArbietoC. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593.  doi: 10.1088/0951-7715/17/2/013.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced series in nonlinear dynamics. World Scientific Publishing Company, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi and D. Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps, Annales scientifiques de l'École Normale Supérieure, Ser. 4, 45 (2012), 861–926.  Google Scholar

[6]

V. Baladi and M. Todd, Linear response for intermittent maps, Communications in Mathematical Physics, 347 (2016), 857-874.  doi: 10.1007/s00220-016-2577-z.  Google Scholar

[7]

G. Birkhoff, Lattice Theory, Number v. 25, pt. 2 in American Mathematical Society colloquium publications. American Mathematical Society, 1940.  Google Scholar

[8]

T. BomfimA. Castro and P. Varandas, Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Advances in Mathematics, 292 (2016), 478-528.  doi: 10.1016/j.aim.2016.01.017.  Google Scholar

[9]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society, 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[10]

H. Bruin and M. Todd, Equilibrium states for interval maps: Potentials with $\sup \varphi-\inf \varphi < htop(f)$, Communications in Mathematical Physics, 283 (2008), 579-611.  doi: 10.1007/s00220-008-0596-0.  Google Scholar

[11]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable markov shifts and multidimensional piecewise expanding maps, Ergodic Theory and Dynamical Systems, 23 (2003), 1383-1400.  doi: 10.1017/S0143385703000087.  Google Scholar

[12]

A. Castro and P. Varandas, Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 30 (2013), 225-249.  doi: 10.1016/j.anihpc.2012.07.004.  Google Scholar

[13]

V. ClimenhagaY. Pesin and A. Zelerowicz, Equilibrium states in dynamical systems via geometric measure theory, Bulletin of the American Mathematical Society, 56 (2019), 569-610.  doi: 10.1090/bull/1659.  Google Scholar

[14]

V. Climenhaga and D. J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Advances in Mathematics, 303 (2016), 745-799.  doi: 10.1016/j.aim.2016.07.029.  Google Scholar

[15]

L. J. DíazV. HoritaI. Rios and M. Sambarino, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474.  doi: 10.1017/S0143385708080346.  Google Scholar

[16]

P. GiuliettiB. KloecknerA. Lopes and D. Marcon, The calculus of thermodynamical formalism, Journal of the European Mathematical Society, 20 (2018), 2357-2412.  doi: 10.4171/JEMS/814.  Google Scholar

[17]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probability Theory and Related Fields, 128 (2002), 82-122.   Google Scholar

[18]

F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Mathematische Zeitschrift, 180 (1982), 119-140.  doi: 10.1007/BF01215004.  Google Scholar

[19]

G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Communications in Mathematical Physics, 300 (2010), 65-94.  doi: 10.1007/s00220-010-1112-x.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer Berlin Heidelberg, 1995.  Google Scholar

[21]

G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux, C. R. Acad. Sci., Paris, Sér. A, 291 (1980), 155-158.   Google Scholar

[22]

A. Korepanov, Linear response for intermittent maps with summable and nonsummable decay of correlations, Nonlinearity, 29 (2016), 1735-1754.  doi: 10.1088/0951-7715/29/6/1735.  Google Scholar

[23]

R. LeplaideurK. Oliveira and I. Rios, Equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems, 31 (2011), 179-195.  doi: 10.1017/S0143385709000972.  Google Scholar

[24]

H. Li and J. Rivera-Letelier, Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials, Communications in Mathematical Physics, 328 (2014), 397-419.  doi: 10.1007/s00220-014-1952-x.  Google Scholar

[25]

C. Liverani, Decay of correlations, Annals of Mathematics, 142 (1995), 239-301.  doi: 10.2307/2118636.  Google Scholar

[26]

C. Liverani, Decay of correlations for piecewise expanding maps, Journal of Statistical Physics, 78 (1995), 1111-1129.  doi: 10.1007/BF02183704.  Google Scholar

[27]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.  doi: 10.1017/S0143385799133856.  Google Scholar

[28]

I. Melbourne and M. Nicol, Statistical properties of endomorphisms and compact group extensions, Journal of the London Mathematical Society, 70 (2004), 427-446.  doi: 10.1112/S0024610704005587.  Google Scholar

[29]

K. Oliveira and M. Viana, Thermodynamical formalism for robust classes of potentials and non-uniformly hyperbolic maps, Ergodic Theory and Dynamical Systems, 28 (2008), 501-533.  doi: 10.1017/S0143385707001009.  Google Scholar

[30] Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics. University of Chicago Press, 2008.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[31]

V. Ramos and J. Siqueira, On equilibrium states for partially hyperbolic horseshoes: Uniqueness and statistical properties, Bulletin of the Brazilian Mathematical Society, New Series, 48 (2017), 347-375.  doi: 10.1007/s00574-017-0027-y.  Google Scholar

[32]

V. Ramos and M. Viana, Equilibrium states for hyperbolic potentials, Nonlinearity, 30 (2017), 825-847.  doi: 10.1088/1361-6544/aa4ec3.  Google Scholar

[33]

I. Rios and J. Siqueira, On equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems, 38 (2018), 301-335.  doi: 10.1017/etds.2016.21.  Google Scholar

[34]

D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Communications in Mathematical Physics, 9 (1968), 267-278.  doi: 10.1007/BF01654281.  Google Scholar

[35]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia of mathematics and its applications. Addison-Wesley Publishing Company, Advanced Book Program, 1978.  Google Scholar

[36]

O. Sarig, Thermodynamic formalism for countable markov shifts, Ergodic Theory and Dynamical Systems, 19 (1999), 1565-1593.  doi: 10.1017/S0143385799146820.  Google Scholar

[37]

O. Sarig, Phase transitions for countable {M}arkov shifts, Communications in Mathematical Physics, 217 (2001), 555-577.  doi: 10.1007/s002200100367.  Google Scholar

[38]

O. Sarig, Subexponential decay of correlations, Inventiones Mathematicae, 150 (2002), 629-653.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[39]

O. Sarig, Lecture notes on thermodynamic formalism for topological markov shifts, (2009). Google Scholar

[40]

Y. Sinai, Gibbs measures in ergodic theory, Russian Mathematical Surveys, 27 (1972), 21.  Google Scholar

[41]

P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 27 (2010), 555-593.  doi: 10.1016/j.anihpc.2009.10.002.  Google Scholar

[42]

M. Viana, Stochastic Dynamics of Deterministic Systems, Lecture Notes XXI Bras. Math. Colloq. IMPA, Rio de Janeiro, 1997. Google Scholar

[43]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Mathematics. Second Series, 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[44]

L.-S. Young, Recurrence times and rates of mixing, Israel Journal of Mathematics, 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

show all references

References:
[1]

J. F. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Inventiones Mathematicae, 140 (2000), 351-398.  doi: 10.1007/s002220000057.  Google Scholar

[2]

J. F. AlvesV. Ramos and J. Siqueira, Equilibrium stability for non-uniformly hyperbolic systems, Ergodic Theory and Dynamical Systems, 39 (2019), 2619-2642.  doi: 10.1017/etds.2017.138.  Google Scholar

[3]

A. ArbietoC. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593.  doi: 10.1088/0951-7715/17/2/013.  Google Scholar

[4]

V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced series in nonlinear dynamics. World Scientific Publishing Company, 2000. doi: 10.1142/9789812813633.  Google Scholar

[5]

V. Baladi and D. Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps, Annales scientifiques de l'École Normale Supérieure, Ser. 4, 45 (2012), 861–926.  Google Scholar

[6]

V. Baladi and M. Todd, Linear response for intermittent maps, Communications in Mathematical Physics, 347 (2016), 857-874.  doi: 10.1007/s00220-016-2577-z.  Google Scholar

[7]

G. Birkhoff, Lattice Theory, Number v. 25, pt. 2 in American Mathematical Society colloquium publications. American Mathematical Society, 1940.  Google Scholar

[8]

T. BomfimA. Castro and P. Varandas, Differentiability of thermodynamical quantities in non-uniformly expanding dynamics, Advances in Mathematics, 292 (2016), 478-528.  doi: 10.1016/j.aim.2016.01.017.  Google Scholar

[9]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Transactions of the American Mathematical Society, 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[10]

H. Bruin and M. Todd, Equilibrium states for interval maps: Potentials with $\sup \varphi-\inf \varphi < htop(f)$, Communications in Mathematical Physics, 283 (2008), 579-611.  doi: 10.1007/s00220-008-0596-0.  Google Scholar

[11]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable markov shifts and multidimensional piecewise expanding maps, Ergodic Theory and Dynamical Systems, 23 (2003), 1383-1400.  doi: 10.1017/S0143385703000087.  Google Scholar

[12]

A. Castro and P. Varandas, Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 30 (2013), 225-249.  doi: 10.1016/j.anihpc.2012.07.004.  Google Scholar

[13]

V. ClimenhagaY. Pesin and A. Zelerowicz, Equilibrium states in dynamical systems via geometric measure theory, Bulletin of the American Mathematical Society, 56 (2019), 569-610.  doi: 10.1090/bull/1659.  Google Scholar

[14]

V. Climenhaga and D. J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Advances in Mathematics, 303 (2016), 745-799.  doi: 10.1016/j.aim.2016.07.029.  Google Scholar

[15]

L. J. DíazV. HoritaI. Rios and M. Sambarino, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474.  doi: 10.1017/S0143385708080346.  Google Scholar

[16]

P. GiuliettiB. KloecknerA. Lopes and D. Marcon, The calculus of thermodynamical formalism, Journal of the European Mathematical Society, 20 (2018), 2357-2412.  doi: 10.4171/JEMS/814.  Google Scholar

[17]

S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probability Theory and Related Fields, 128 (2002), 82-122.   Google Scholar

[18]

F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Mathematische Zeitschrift, 180 (1982), 119-140.  doi: 10.1007/BF01215004.  Google Scholar

[19]

G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Communications in Mathematical Physics, 300 (2010), 65-94.  doi: 10.1007/s00220-010-1112-x.  Google Scholar

[20]

T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics. Springer Berlin Heidelberg, 1995.  Google Scholar

[21]

G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux, C. R. Acad. Sci., Paris, Sér. A, 291 (1980), 155-158.   Google Scholar

[22]

A. Korepanov, Linear response for intermittent maps with summable and nonsummable decay of correlations, Nonlinearity, 29 (2016), 1735-1754.  doi: 10.1088/0951-7715/29/6/1735.  Google Scholar

[23]

R. LeplaideurK. Oliveira and I. Rios, Equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems, 31 (2011), 179-195.  doi: 10.1017/S0143385709000972.  Google Scholar

[24]

H. Li and J. Rivera-Letelier, Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials, Communications in Mathematical Physics, 328 (2014), 397-419.  doi: 10.1007/s00220-014-1952-x.  Google Scholar

[25]

C. Liverani, Decay of correlations, Annals of Mathematics, 142 (1995), 239-301.  doi: 10.2307/2118636.  Google Scholar

[26]

C. Liverani, Decay of correlations for piecewise expanding maps, Journal of Statistical Physics, 78 (1995), 1111-1129.  doi: 10.1007/BF02183704.  Google Scholar

[27]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.  doi: 10.1017/S0143385799133856.  Google Scholar

[28]

I. Melbourne and M. Nicol, Statistical properties of endomorphisms and compact group extensions, Journal of the London Mathematical Society, 70 (2004), 427-446.  doi: 10.1112/S0024610704005587.  Google Scholar

[29]

K. Oliveira and M. Viana, Thermodynamical formalism for robust classes of potentials and non-uniformly hyperbolic maps, Ergodic Theory and Dynamical Systems, 28 (2008), 501-533.  doi: 10.1017/S0143385707001009.  Google Scholar

[30] Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics. University of Chicago Press, 2008.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[31]

V. Ramos and J. Siqueira, On equilibrium states for partially hyperbolic horseshoes: Uniqueness and statistical properties, Bulletin of the Brazilian Mathematical Society, New Series, 48 (2017), 347-375.  doi: 10.1007/s00574-017-0027-y.  Google Scholar

[32]

V. Ramos and M. Viana, Equilibrium states for hyperbolic potentials, Nonlinearity, 30 (2017), 825-847.  doi: 10.1088/1361-6544/aa4ec3.  Google Scholar

[33]

I. Rios and J. Siqueira, On equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems, 38 (2018), 301-335.  doi: 10.1017/etds.2016.21.  Google Scholar

[34]

D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Communications in Mathematical Physics, 9 (1968), 267-278.  doi: 10.1007/BF01654281.  Google Scholar

[35]

D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Encyclopedia of mathematics and its applications. Addison-Wesley Publishing Company, Advanced Book Program, 1978.  Google Scholar

[36]

O. Sarig, Thermodynamic formalism for countable markov shifts, Ergodic Theory and Dynamical Systems, 19 (1999), 1565-1593.  doi: 10.1017/S0143385799146820.  Google Scholar

[37]

O. Sarig, Phase transitions for countable {M}arkov shifts, Communications in Mathematical Physics, 217 (2001), 555-577.  doi: 10.1007/s002200100367.  Google Scholar

[38]

O. Sarig, Subexponential decay of correlations, Inventiones Mathematicae, 150 (2002), 629-653.  doi: 10.1007/s00222-002-0248-5.  Google Scholar

[39]

O. Sarig, Lecture notes on thermodynamic formalism for topological markov shifts, (2009). Google Scholar

[40]

Y. Sinai, Gibbs measures in ergodic theory, Russian Mathematical Surveys, 27 (1972), 21.  Google Scholar

[41]

P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 27 (2010), 555-593.  doi: 10.1016/j.anihpc.2009.10.002.  Google Scholar

[42]

M. Viana, Stochastic Dynamics of Deterministic Systems, Lecture Notes XXI Bras. Math. Colloq. IMPA, Rio de Janeiro, 1997. Google Scholar

[43]

L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Mathematics. Second Series, 147 (1998), 585-650.  doi: 10.2307/120960.  Google Scholar

[44]

L.-S. Young, Recurrence times and rates of mixing, Israel Journal of Mathematics, 110 (1999), 153-188.  doi: 10.1007/BF02808180.  Google Scholar

Figure 1.  Hyperbolic pre-balls
[1]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[2]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[6]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[9]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[10]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041

[11]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[12]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[13]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[14]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[15]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[16]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[19]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[20]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]