October  2021, 41(10): 4515-4529. doi: 10.3934/dcds.2021046

Counting finite orbits for the flip systems of shifts of finite type

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

* Corresponding author

Received  August 2020 Revised  January 2021 Published  October 2021 Early access  March 2021

Fund Project: This work is supported by the research grant FRGS/1/2019/STG06/UKM/01/3 by the Ministry of Higher Education, Malaysia

For a discrete system $ (X,T) $, the flip system $ (X,T,F) $ can be regarded as the action of infinite dihedral group $ D_\infty $ on the space $ X $. Under this action, $ X $ is partitioned into a set of orbits. We are interested in counting the finite orbits in this partition via the prime orbit counting function. In this paper, we prove the asymptotic behaviour of this counting function for the flip systems of shifts of finite type. The proof relies mostly on combinatorial calculations instead of the usual approach via zeta function. Here, we are able to obtain more precise asymptotic result for this $ D_\infty $-action on shifts of finite type as compared to other group actions on systems available in the literature.

Citation: Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4515-4529. doi: 10.3934/dcds.2021046
References:
[1]

T. Adachi, Markov families for Anosov flows with an involutive action, Nagoya Math. J., 104 (1986), 55-62.  doi: 10.1017/S0027763000022674.  Google Scholar

[2]

S. Akhatkulov, M. S. M. Noorani and H. Akhadkulov, An analogue of the prime number, Mertens' and Meissel's theorems for closed orbits of the Dyck shift, AIP Conf. Proc., 1830 (2017), 070022, 1-9. doi: 10.1063/1.4980971.  Google Scholar

[3]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Estimates on the number of orbits of the Dyck shift, J. Inequal. Appl., 2015 (2015), 372-384.  doi: 10.1186/s13660-015-0899-6.  Google Scholar

[4]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Analogues of the prime number theorem and Mertens' theorem for closed orbits of the Motzkin shift, Bull. Malays. Math. Sci. Soc., 40 (2017), 307-319.  doi: 10.1007/s40840-015-0144-y.  Google Scholar

[5]

M. Artin and B. Mazur, On periodic points, Ann. Math., 81 (1965), 82-99.  doi: 10.2307/1970384.  Google Scholar

[6]

G. EverestR. MilesS. Stevens and T. Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math., 608 (2007), 155-182.  doi: 10.1515/CRELLE.2007.056.  Google Scholar

[7]

G. EverestR. MilesS. Stevens and T. Ward, Dirichlet series for finite combinatorial rank dynamics, Trans. Amer. Math. Soc., 362 (2010), 199-227.  doi: 10.1090/S0002-9947-09-04962-9.  Google Scholar

[8]

G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, eds. D. R. HeathBrown and J. H. Silverman, 6$^th$ edition, Oxford University Press, Oxford, 2008. Google Scholar

[9]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301.  doi: 10.2140/pjm.2003.209.289.  Google Scholar

[10]

Y.-O. Kim and S. Ryu, On the number of fixed points of a sofic shift-flip system, Ergod. Theory Dyn. Syst., 35 (2015), 482-498.  doi: 10.1017/etds.2013.57.  Google Scholar

[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[12]

R. Miles, Orbit growth for algebraic flip systems, Ergod. Theory Dyn. Syst., 35 (2015), 2613-2631.  doi: 10.1017/etds.2014.38.  Google Scholar

[13]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc., 137 (2009), 1499-1507.  doi: 10.1090/s0002-9939-08-09649-4.  Google Scholar

[14]

A. Nordin and M. S. M. Noorani, Orbit growth of periodic-finite-type shifts via Artin-Mazur zeta function, Mathematics, 8 (2020), 1-19.  doi: 10.3390/math8050685.  Google Scholar

[15]

A. Nordin, M. S. M. Noorani and S. C. Dzul-Kifli, Counting closed orbits in discrete dynamical systems, in Dynamical Systems, Bifurcation Analysis and Applications (eds. M. Mohd, N. Abdul Rahman, N. Abd Hamid and Y. Mohd Yatim), Springer, Singapore, 2019, 147-171. doi: 10.1007/978-981-32-9832-3_9.  Google Scholar

[16]

A. NordinM. S. M. Noorani and S. C. Dzul-Kifli, Orbit growth of Dyck and Motzkin shifts via Artin-Mazur zeta function, Dyn. Syst., 35 (2020), 655-667.  doi: 10.1080/14689367.2020.1770201.  Google Scholar

[17]

A. Pakapongpun and T. Ward, Functorial orbit counting, J. Integer Seq., 12 (2009), 1-20.   Google Scholar

[18]

W. Parry, An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions, Isr. J. Math., 45 (1983), 41-52.  doi: 10.1007/BF02760669.  Google Scholar

[19]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187-188 (1990), 268 pp.  Google Scholar

[20]

M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergod. Theory Dyn. Syst., 1 (1981), 107-133.  doi: 10.1017/S0143385700001206.  Google Scholar

[21]

S. Waddington, The prime orbit theorem for quasihyperbolic toral automorphisms, Monatshefte für Math., 112 (1991), 235-248.  doi: 10.1007/BF01297343.  Google Scholar

show all references

References:
[1]

T. Adachi, Markov families for Anosov flows with an involutive action, Nagoya Math. J., 104 (1986), 55-62.  doi: 10.1017/S0027763000022674.  Google Scholar

[2]

S. Akhatkulov, M. S. M. Noorani and H. Akhadkulov, An analogue of the prime number, Mertens' and Meissel's theorems for closed orbits of the Dyck shift, AIP Conf. Proc., 1830 (2017), 070022, 1-9. doi: 10.1063/1.4980971.  Google Scholar

[3]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Estimates on the number of orbits of the Dyck shift, J. Inequal. Appl., 2015 (2015), 372-384.  doi: 10.1186/s13660-015-0899-6.  Google Scholar

[4]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Analogues of the prime number theorem and Mertens' theorem for closed orbits of the Motzkin shift, Bull. Malays. Math. Sci. Soc., 40 (2017), 307-319.  doi: 10.1007/s40840-015-0144-y.  Google Scholar

[5]

M. Artin and B. Mazur, On periodic points, Ann. Math., 81 (1965), 82-99.  doi: 10.2307/1970384.  Google Scholar

[6]

G. EverestR. MilesS. Stevens and T. Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math., 608 (2007), 155-182.  doi: 10.1515/CRELLE.2007.056.  Google Scholar

[7]

G. EverestR. MilesS. Stevens and T. Ward, Dirichlet series for finite combinatorial rank dynamics, Trans. Amer. Math. Soc., 362 (2010), 199-227.  doi: 10.1090/S0002-9947-09-04962-9.  Google Scholar

[8]

G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, eds. D. R. HeathBrown and J. H. Silverman, 6$^th$ edition, Oxford University Press, Oxford, 2008. Google Scholar

[9]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301.  doi: 10.2140/pjm.2003.209.289.  Google Scholar

[10]

Y.-O. Kim and S. Ryu, On the number of fixed points of a sofic shift-flip system, Ergod. Theory Dyn. Syst., 35 (2015), 482-498.  doi: 10.1017/etds.2013.57.  Google Scholar

[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[12]

R. Miles, Orbit growth for algebraic flip systems, Ergod. Theory Dyn. Syst., 35 (2015), 2613-2631.  doi: 10.1017/etds.2014.38.  Google Scholar

[13]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc., 137 (2009), 1499-1507.  doi: 10.1090/s0002-9939-08-09649-4.  Google Scholar

[14]

A. Nordin and M. S. M. Noorani, Orbit growth of periodic-finite-type shifts via Artin-Mazur zeta function, Mathematics, 8 (2020), 1-19.  doi: 10.3390/math8050685.  Google Scholar

[15]

A. Nordin, M. S. M. Noorani and S. C. Dzul-Kifli, Counting closed orbits in discrete dynamical systems, in Dynamical Systems, Bifurcation Analysis and Applications (eds. M. Mohd, N. Abdul Rahman, N. Abd Hamid and Y. Mohd Yatim), Springer, Singapore, 2019, 147-171. doi: 10.1007/978-981-32-9832-3_9.  Google Scholar

[16]

A. NordinM. S. M. Noorani and S. C. Dzul-Kifli, Orbit growth of Dyck and Motzkin shifts via Artin-Mazur zeta function, Dyn. Syst., 35 (2020), 655-667.  doi: 10.1080/14689367.2020.1770201.  Google Scholar

[17]

A. Pakapongpun and T. Ward, Functorial orbit counting, J. Integer Seq., 12 (2009), 1-20.   Google Scholar

[18]

W. Parry, An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions, Isr. J. Math., 45 (1983), 41-52.  doi: 10.1007/BF02760669.  Google Scholar

[19]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187-188 (1990), 268 pp.  Google Scholar

[20]

M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergod. Theory Dyn. Syst., 1 (1981), 107-133.  doi: 10.1017/S0143385700001206.  Google Scholar

[21]

S. Waddington, The prime orbit theorem for quasihyperbolic toral automorphisms, Monatshefte für Math., 112 (1991), 235-248.  doi: 10.1007/BF01297343.  Google Scholar

[1]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[2]

Wade Hindes. Orbit counting in polarized dynamical systems. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021112

[3]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[4]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[5]

Jon Chaika, Bryna Kra. A prime system with many self-joinings. Journal of Modern Dynamics, 2021, 17: 213-265. doi: 10.3934/jmd.2021007

[6]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[7]

Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149

[8]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[9]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[10]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[11]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021032

[12]

Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020105

[13]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[14]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[15]

Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206

[16]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[17]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[18]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete & Continuous Dynamical Systems, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[19]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[20]

David Colton, Rainer Kress. Thirty years and still counting. Inverse Problems & Imaging, 2009, 3 (2) : 151-153. doi: 10.3934/ipi.2009.3.151

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (192)
  • HTML views (230)
  • Cited by (0)

Other articles
by authors

[Back to Top]