• Previous Article
    Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation
  • DCDS Home
  • This Issue
  • Next Article
    Singular double-phase systems with variable growth for the Baouendi-Grushin operator
doi: 10.3934/dcds.2021046

Counting finite orbits for the flip systems of shifts of finite type

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

* Corresponding author

Received  August 2020 Revised  January 2021 Published  March 2021

Fund Project: This work is supported by the research grant FRGS/1/2019/STG06/UKM/01/3 by the Ministry of Higher Education, Malaysia

For a discrete system $ (X,T) $, the flip system $ (X,T,F) $ can be regarded as the action of infinite dihedral group $ D_\infty $ on the space $ X $. Under this action, $ X $ is partitioned into a set of orbits. We are interested in counting the finite orbits in this partition via the prime orbit counting function. In this paper, we prove the asymptotic behaviour of this counting function for the flip systems of shifts of finite type. The proof relies mostly on combinatorial calculations instead of the usual approach via zeta function. Here, we are able to obtain more precise asymptotic result for this $ D_\infty $-action on shifts of finite type as compared to other group actions on systems available in the literature.

Citation: Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021046
References:
[1]

T. Adachi, Markov families for Anosov flows with an involutive action, Nagoya Math. J., 104 (1986), 55-62.  doi: 10.1017/S0027763000022674.  Google Scholar

[2]

S. Akhatkulov, M. S. M. Noorani and H. Akhadkulov, An analogue of the prime number, Mertens' and Meissel's theorems for closed orbits of the Dyck shift, AIP Conf. Proc., 1830 (2017), 070022, 1-9. doi: 10.1063/1.4980971.  Google Scholar

[3]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Estimates on the number of orbits of the Dyck shift, J. Inequal. Appl., 2015 (2015), 372-384.  doi: 10.1186/s13660-015-0899-6.  Google Scholar

[4]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Analogues of the prime number theorem and Mertens' theorem for closed orbits of the Motzkin shift, Bull. Malays. Math. Sci. Soc., 40 (2017), 307-319.  doi: 10.1007/s40840-015-0144-y.  Google Scholar

[5]

M. Artin and B. Mazur, On periodic points, Ann. Math., 81 (1965), 82-99.  doi: 10.2307/1970384.  Google Scholar

[6]

G. EverestR. MilesS. Stevens and T. Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math., 608 (2007), 155-182.  doi: 10.1515/CRELLE.2007.056.  Google Scholar

[7]

G. EverestR. MilesS. Stevens and T. Ward, Dirichlet series for finite combinatorial rank dynamics, Trans. Amer. Math. Soc., 362 (2010), 199-227.  doi: 10.1090/S0002-9947-09-04962-9.  Google Scholar

[8]

G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, eds. D. R. HeathBrown and J. H. Silverman, 6$^th$ edition, Oxford University Press, Oxford, 2008. Google Scholar

[9]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301.  doi: 10.2140/pjm.2003.209.289.  Google Scholar

[10]

Y.-O. Kim and S. Ryu, On the number of fixed points of a sofic shift-flip system, Ergod. Theory Dyn. Syst., 35 (2015), 482-498.  doi: 10.1017/etds.2013.57.  Google Scholar

[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[12]

R. Miles, Orbit growth for algebraic flip systems, Ergod. Theory Dyn. Syst., 35 (2015), 2613-2631.  doi: 10.1017/etds.2014.38.  Google Scholar

[13]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc., 137 (2009), 1499-1507.  doi: 10.1090/s0002-9939-08-09649-4.  Google Scholar

[14]

A. Nordin and M. S. M. Noorani, Orbit growth of periodic-finite-type shifts via Artin-Mazur zeta function, Mathematics, 8 (2020), 1-19.  doi: 10.3390/math8050685.  Google Scholar

[15]

A. Nordin, M. S. M. Noorani and S. C. Dzul-Kifli, Counting closed orbits in discrete dynamical systems, in Dynamical Systems, Bifurcation Analysis and Applications (eds. M. Mohd, N. Abdul Rahman, N. Abd Hamid and Y. Mohd Yatim), Springer, Singapore, 2019, 147-171. doi: 10.1007/978-981-32-9832-3_9.  Google Scholar

[16]

A. NordinM. S. M. Noorani and S. C. Dzul-Kifli, Orbit growth of Dyck and Motzkin shifts via Artin-Mazur zeta function, Dyn. Syst., 35 (2020), 655-667.  doi: 10.1080/14689367.2020.1770201.  Google Scholar

[17]

A. Pakapongpun and T. Ward, Functorial orbit counting, J. Integer Seq., 12 (2009), 1-20.   Google Scholar

[18]

W. Parry, An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions, Isr. J. Math., 45 (1983), 41-52.  doi: 10.1007/BF02760669.  Google Scholar

[19]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187-188 (1990), 268 pp.  Google Scholar

[20]

M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergod. Theory Dyn. Syst., 1 (1981), 107-133.  doi: 10.1017/S0143385700001206.  Google Scholar

[21]

S. Waddington, The prime orbit theorem for quasihyperbolic toral automorphisms, Monatshefte für Math., 112 (1991), 235-248.  doi: 10.1007/BF01297343.  Google Scholar

show all references

References:
[1]

T. Adachi, Markov families for Anosov flows with an involutive action, Nagoya Math. J., 104 (1986), 55-62.  doi: 10.1017/S0027763000022674.  Google Scholar

[2]

S. Akhatkulov, M. S. M. Noorani and H. Akhadkulov, An analogue of the prime number, Mertens' and Meissel's theorems for closed orbits of the Dyck shift, AIP Conf. Proc., 1830 (2017), 070022, 1-9. doi: 10.1063/1.4980971.  Google Scholar

[3]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Estimates on the number of orbits of the Dyck shift, J. Inequal. Appl., 2015 (2015), 372-384.  doi: 10.1186/s13660-015-0899-6.  Google Scholar

[4]

F. AlsharariM. S. M. Noorani and H. Akhadkulov, Analogues of the prime number theorem and Mertens' theorem for closed orbits of the Motzkin shift, Bull. Malays. Math. Sci. Soc., 40 (2017), 307-319.  doi: 10.1007/s40840-015-0144-y.  Google Scholar

[5]

M. Artin and B. Mazur, On periodic points, Ann. Math., 81 (1965), 82-99.  doi: 10.2307/1970384.  Google Scholar

[6]

G. EverestR. MilesS. Stevens and T. Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math., 608 (2007), 155-182.  doi: 10.1515/CRELLE.2007.056.  Google Scholar

[7]

G. EverestR. MilesS. Stevens and T. Ward, Dirichlet series for finite combinatorial rank dynamics, Trans. Amer. Math. Soc., 362 (2010), 199-227.  doi: 10.1090/S0002-9947-09-04962-9.  Google Scholar

[8]

G. H. Hardy and E. M. Wright, An Introduction to Theory of Numbers, eds. D. R. HeathBrown and J. H. Silverman, 6$^th$ edition, Oxford University Press, Oxford, 2008. Google Scholar

[9]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301.  doi: 10.2140/pjm.2003.209.289.  Google Scholar

[10]

Y.-O. Kim and S. Ryu, On the number of fixed points of a sofic shift-flip system, Ergod. Theory Dyn. Syst., 35 (2015), 482-498.  doi: 10.1017/etds.2013.57.  Google Scholar

[11] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[12]

R. Miles, Orbit growth for algebraic flip systems, Ergod. Theory Dyn. Syst., 35 (2015), 2613-2631.  doi: 10.1017/etds.2014.38.  Google Scholar

[13]

R. Miles and T. Ward, Orbit-counting for nilpotent group shifts, Proc. Amer. Math. Soc., 137 (2009), 1499-1507.  doi: 10.1090/s0002-9939-08-09649-4.  Google Scholar

[14]

A. Nordin and M. S. M. Noorani, Orbit growth of periodic-finite-type shifts via Artin-Mazur zeta function, Mathematics, 8 (2020), 1-19.  doi: 10.3390/math8050685.  Google Scholar

[15]

A. Nordin, M. S. M. Noorani and S. C. Dzul-Kifli, Counting closed orbits in discrete dynamical systems, in Dynamical Systems, Bifurcation Analysis and Applications (eds. M. Mohd, N. Abdul Rahman, N. Abd Hamid and Y. Mohd Yatim), Springer, Singapore, 2019, 147-171. doi: 10.1007/978-981-32-9832-3_9.  Google Scholar

[16]

A. NordinM. S. M. Noorani and S. C. Dzul-Kifli, Orbit growth of Dyck and Motzkin shifts via Artin-Mazur zeta function, Dyn. Syst., 35 (2020), 655-667.  doi: 10.1080/14689367.2020.1770201.  Google Scholar

[17]

A. Pakapongpun and T. Ward, Functorial orbit counting, J. Integer Seq., 12 (2009), 1-20.   Google Scholar

[18]

W. Parry, An analogue of the prime number theorem for closed orbits of shifts of finite type and their suspensions, Isr. J. Math., 45 (1983), 41-52.  doi: 10.1007/BF02760669.  Google Scholar

[19]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187-188 (1990), 268 pp.  Google Scholar

[20]

M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure, Ergod. Theory Dyn. Syst., 1 (1981), 107-133.  doi: 10.1017/S0143385700001206.  Google Scholar

[21]

S. Waddington, The prime orbit theorem for quasihyperbolic toral automorphisms, Monatshefte für Math., 112 (1991), 235-248.  doi: 10.1007/BF01297343.  Google Scholar

[1]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[2]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[3]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[8]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[9]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[10]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[11]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[12]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[13]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[14]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[15]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[16]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[17]

Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021027

[18]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[19]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[20]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]