-
Previous Article
Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains
- DCDS Home
- This Issue
-
Next Article
Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $
On the critical decay for the wave equation with a cubic convolution in 3D
1. | Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan |
2. | Department of Creative Engineering, National Institute of Technology, Kushiro College, 2-32-1 Otanoshike-Nishi, Kushiro-Shi, Hokkaido 084-0916, Japan |
$ \partial_{t}^2 u-\Delta u = (|x|^{- \gamma}*u^2)u $ |
$ 0< \gamma<3 $ |
$ * $ |
$ \gamma\ge2 $ |
$ 2\le \gamma<3 $ |
$ 2\le \gamma<3 $ |
$ L^ \infty $ |
$ \gamma = 2 $ |
$ 2< \gamma<3 $ |
References:
[1] |
R. Agemi and H. Takamura,
The lifespan of classical solutions to nonlinear wave equations in two space dimensions, Hokkaido Math. J., 21 (1992), 517-542.
doi: 10.14492/hokmj/1381413726. |
[2] |
R. Agemi, Y. Kurokawa and H. Takamura,
Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differential Equations, 167 (2000), 87-133.
doi: 10.1006/jdeq.2000.3766. |
[3] |
F. Asakura,
Existence of a global solution to a semi-linear wave equation with slowly decaying initial data in three space dimensions, Comm. Partial Differential Equations, 11 (1986), 1459-1487.
doi: 10.1080/03605308608820470. |
[4] |
V. Georgiev, H. Lindblad and C. D. Sogge,
Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119 (1997), 1291-1319.
doi: 10.1353/ajm.1997.0038. |
[5] |
R. Glassey,
Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177 (1981), 323-340.
doi: 10.1007/BF01162066. |
[6] |
R. Glassey,
Existence in the large for $\Box u = f(u)$ in two space dimensions, Math. Z., 178 (1981), 233-261.
doi: 10.1007/BF01262042. |
[7] |
K. Hidano,
Small data scattering and blow-up for a wave equation with a cubic convolution, Funkcial. Ekvac., 43 (2000), 559-588.
|
[8] |
F. John, Plane Waves and Spherical Means, Applied to Partial Differential Equations, Interscience Publishers, Inc., New York, 1955. Google Scholar |
[9] |
F. John,
Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.
doi: 10.1007/BF01647974. |
[10] |
M. Kato and M. Sakuraba,
Global existence and blow-up for semilinear damped wave equations in three space dimensions, Nonlinear Anal., 182 (2019), 209-225.
doi: 10.1016/j.na.2018.12.013. |
[11] |
J. B. Keller,
On solutions of nonlinear wave equations, Comm. Pure Appl. Math., 10 (1957), 523-530.
doi: 10.1002/cpa.3160100404. |
[12] |
H. Kubo,
On the critical decay and power for semilinear wave equations in odd space dimensions, Discrete Contin. Dyn. Syst., 2 (1996), 173-190.
doi: 10.3934/dcds.1996.2.173. |
[13] |
H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications, Dispersive nonlinear problems in mathematical physics, 123–148, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. |
[14] |
H. Kubo and K. Kubota,
Asymptotic behavior of radially symmetric solutions of $\Box u = |u|^p$ for super critical values $p$ in even space dimensions, Jpn. J. Math., 24 (1998), 191-256.
doi: 10.4099/math1924.24.191. |
[15] |
H. Kubo and M. Ohta, On the global behavior of classical solutions to coupled systems of semilinear wave equations, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2005.
doi: 10.1007/3-7643-7386-5_2. |
[16] |
K. Kubota,
Existence of a global solution to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.
doi: 10.14492/hokmj/1381413170. |
[17] |
N.-A. Lai and Y. Zhou,
An elementary proof of Strauss conjecture, J. Funct. Anal., 267 (2014), 1364-1381.
doi: 10.1016/j.jfa.2014.05.020. |
[18] |
H. Lindblad,
Blow-up for solutions of $\Box u = |u|^p$ with small initial data, Comm. Partial Differential Equations, 15 (1990), 757-821.
doi: 10.1080/03605309908820708. |
[19] |
H. Lindblad and C. D. Sogge,
Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (1996), 1047-1135.
doi: 10.1353/ajm.1996.0042. |
[20] |
G. P. Menzala and W. A. Strauss,
On a wave equation with a cubic convolution,, J. Differential Equations, 43 (1982), 93-105.
doi: 10.1016/0022-0396(82)90076-6. |
[21] |
M. A. Rammaha,
Finite-time blow-up for nonlinear wave equations in high dimensions, Comm. in Partial Differential Equations, 12 (1987), 677-700.
doi: 10.1080/03605308708820506. |
[22] |
J. Schaeffer,
The equation $u_tt-\Delta u = |u|^{p}$ for the critical value of $p$, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 31-44.
doi: 10.1017/S0308210500026135. |
[23] |
T. C. Sideris,
Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984), 378-406.
doi: 10.1016/0022-0396(84)90169-4. |
[24] |
H. Takamura,
Blow-up for semilinear wave equations with slowly decaying data in high dimensions, Differential Integral Equations, 8 (1995), 647-661.
|
[25] |
H. Takamura,
Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal., 125 (2015), 227-240.
doi: 10.1016/j.na.2015.05.024. |
[26] |
H. Takamura, H. Uesaka and K. Wakasa,
Blow-up theorem for semilinear wave equations with non-zero initial position, J. Differential Equations, 249 (2010), 914-930.
doi: 10.1016/j.jde.2010.01.010. |
[27] |
H. Takamura and K. Wakasa,
The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations, 251 (2011), 1157-1171.
doi: 10.1016/j.jde.2011.03.024. |
[28] |
K. Tsutaya,
A global existence theorem for semilinear wave equations with data of non compact support in two space dimensions, Comm. Partial Differential Equations, 17 (1992), 1925-1954.
doi: 10.1080/03605309208820909. |
[29] |
K. Tsutaya,
Global existence theorem for semilinear wave equations with non-compact data in two space dimensions, J. Differential Equations, 104 (1993), 332-360.
doi: 10.1006/jdeq.1993.1076. |
[30] |
K. Tsutaya,
Global existence and the lifespan of solutions of semilinear wave equations with data of non compact support in three space dimensions, Funkcial. Ekvac., 37 (1994), 1-18.
|
[31] |
K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, Kluwer Acad. Publ., Dordrecht, 2003. |
[32] |
K. Tsutaya,
Weighted estimates for a convolution appearing in the wave equation of Hartree type, J. Math. Anal. Appl., 411 (2014), 719-731.
doi: 10.1016/j.jmaa.2013.10.021. |
[33] |
K. Wakasa,
The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension, Hokkaido Math. J., 46 (2017), 257-276.
doi: 10.14492/hokmj/1498788020. |
[34] |
B. Yordanov and Q. S. Zhang,
Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.
doi: 10.1016/j.jfa.2005.03.012. |
[35] |
Y. Zhou,
Blow up of classical solutions to $\Box u=|u|^{1+\alpha}$ in three space dimensions, J. Partial Differential Equations, 5 (1992), 21-32.
|
[36] |
Y. Zhou,
Life span of classical solutions to $\Box u=|u|^{p}$ in two space dimensions, Chin. Ann. Math. Ser. B, 14 (1993), 225-236.
|
[37] |
Y. Zhou,
Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205-212.
doi: 10.1007/s11401-005-0205-x. |
[38] |
Y. Zhou and W. Han,
Life-span of solutions to critical semilinear wave equations, Comm. Partial Differential Equations, 39 (2014), 439-451.
doi: 10.1080/03605302.2013.863914. |
show all references
References:
[1] |
R. Agemi and H. Takamura,
The lifespan of classical solutions to nonlinear wave equations in two space dimensions, Hokkaido Math. J., 21 (1992), 517-542.
doi: 10.14492/hokmj/1381413726. |
[2] |
R. Agemi, Y. Kurokawa and H. Takamura,
Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differential Equations, 167 (2000), 87-133.
doi: 10.1006/jdeq.2000.3766. |
[3] |
F. Asakura,
Existence of a global solution to a semi-linear wave equation with slowly decaying initial data in three space dimensions, Comm. Partial Differential Equations, 11 (1986), 1459-1487.
doi: 10.1080/03605308608820470. |
[4] |
V. Georgiev, H. Lindblad and C. D. Sogge,
Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119 (1997), 1291-1319.
doi: 10.1353/ajm.1997.0038. |
[5] |
R. Glassey,
Finite-time blow-up for solutions of nonlinear wave equations, Math. Z., 177 (1981), 323-340.
doi: 10.1007/BF01162066. |
[6] |
R. Glassey,
Existence in the large for $\Box u = f(u)$ in two space dimensions, Math. Z., 178 (1981), 233-261.
doi: 10.1007/BF01262042. |
[7] |
K. Hidano,
Small data scattering and blow-up for a wave equation with a cubic convolution, Funkcial. Ekvac., 43 (2000), 559-588.
|
[8] |
F. John, Plane Waves and Spherical Means, Applied to Partial Differential Equations, Interscience Publishers, Inc., New York, 1955. Google Scholar |
[9] |
F. John,
Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.
doi: 10.1007/BF01647974. |
[10] |
M. Kato and M. Sakuraba,
Global existence and blow-up for semilinear damped wave equations in three space dimensions, Nonlinear Anal., 182 (2019), 209-225.
doi: 10.1016/j.na.2018.12.013. |
[11] |
J. B. Keller,
On solutions of nonlinear wave equations, Comm. Pure Appl. Math., 10 (1957), 523-530.
doi: 10.1002/cpa.3160100404. |
[12] |
H. Kubo,
On the critical decay and power for semilinear wave equations in odd space dimensions, Discrete Contin. Dyn. Syst., 2 (1996), 173-190.
doi: 10.3934/dcds.1996.2.173. |
[13] |
H. Kubo, On Point-Wise Decay Estimates for the Wave Equation and Their Applications, Dispersive nonlinear problems in mathematical physics, 123–148, Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. |
[14] |
H. Kubo and K. Kubota,
Asymptotic behavior of radially symmetric solutions of $\Box u = |u|^p$ for super critical values $p$ in even space dimensions, Jpn. J. Math., 24 (1998), 191-256.
doi: 10.4099/math1924.24.191. |
[15] |
H. Kubo and M. Ohta, On the global behavior of classical solutions to coupled systems of semilinear wave equations, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Adv. Partial Differ. Equ. (Basel), Birkhäuser, Basel, 2005.
doi: 10.1007/3-7643-7386-5_2. |
[16] |
K. Kubota,
Existence of a global solution to a semi-linear wave equation with initial data of non-compact support in low space dimensions, Hokkaido Math. J., 22 (1993), 123-180.
doi: 10.14492/hokmj/1381413170. |
[17] |
N.-A. Lai and Y. Zhou,
An elementary proof of Strauss conjecture, J. Funct. Anal., 267 (2014), 1364-1381.
doi: 10.1016/j.jfa.2014.05.020. |
[18] |
H. Lindblad,
Blow-up for solutions of $\Box u = |u|^p$ with small initial data, Comm. Partial Differential Equations, 15 (1990), 757-821.
doi: 10.1080/03605309908820708. |
[19] |
H. Lindblad and C. D. Sogge,
Long-time existence for small amplitude semilinear wave equations, Amer. J. Math., 118 (1996), 1047-1135.
doi: 10.1353/ajm.1996.0042. |
[20] |
G. P. Menzala and W. A. Strauss,
On a wave equation with a cubic convolution,, J. Differential Equations, 43 (1982), 93-105.
doi: 10.1016/0022-0396(82)90076-6. |
[21] |
M. A. Rammaha,
Finite-time blow-up for nonlinear wave equations in high dimensions, Comm. in Partial Differential Equations, 12 (1987), 677-700.
doi: 10.1080/03605308708820506. |
[22] |
J. Schaeffer,
The equation $u_tt-\Delta u = |u|^{p}$ for the critical value of $p$, Proc. Roy. Soc. Edinburgh Sect. A, 101 (1985), 31-44.
doi: 10.1017/S0308210500026135. |
[23] |
T. C. Sideris,
Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations, 52 (1984), 378-406.
doi: 10.1016/0022-0396(84)90169-4. |
[24] |
H. Takamura,
Blow-up for semilinear wave equations with slowly decaying data in high dimensions, Differential Integral Equations, 8 (1995), 647-661.
|
[25] |
H. Takamura,
Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal., 125 (2015), 227-240.
doi: 10.1016/j.na.2015.05.024. |
[26] |
H. Takamura, H. Uesaka and K. Wakasa,
Blow-up theorem for semilinear wave equations with non-zero initial position, J. Differential Equations, 249 (2010), 914-930.
doi: 10.1016/j.jde.2010.01.010. |
[27] |
H. Takamura and K. Wakasa,
The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations, 251 (2011), 1157-1171.
doi: 10.1016/j.jde.2011.03.024. |
[28] |
K. Tsutaya,
A global existence theorem for semilinear wave equations with data of non compact support in two space dimensions, Comm. Partial Differential Equations, 17 (1992), 1925-1954.
doi: 10.1080/03605309208820909. |
[29] |
K. Tsutaya,
Global existence theorem for semilinear wave equations with non-compact data in two space dimensions, J. Differential Equations, 104 (1993), 332-360.
doi: 10.1006/jdeq.1993.1076. |
[30] |
K. Tsutaya,
Global existence and the lifespan of solutions of semilinear wave equations with data of non compact support in three space dimensions, Funkcial. Ekvac., 37 (1994), 1-18.
|
[31] |
K. Tsutaya, Global existence and blow up for a wave equation with a potential and a cubic convolution, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th Birthday. Vol. 1, 2, Kluwer Acad. Publ., Dordrecht, 2003. |
[32] |
K. Tsutaya,
Weighted estimates for a convolution appearing in the wave equation of Hartree type, J. Math. Anal. Appl., 411 (2014), 719-731.
doi: 10.1016/j.jmaa.2013.10.021. |
[33] |
K. Wakasa,
The lifespan of solutions to wave equations with weighted nonlinear terms in one space dimension, Hokkaido Math. J., 46 (2017), 257-276.
doi: 10.14492/hokmj/1498788020. |
[34] |
B. Yordanov and Q. S. Zhang,
Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361-374.
doi: 10.1016/j.jfa.2005.03.012. |
[35] |
Y. Zhou,
Blow up of classical solutions to $\Box u=|u|^{1+\alpha}$ in three space dimensions, J. Partial Differential Equations, 5 (1992), 21-32.
|
[36] |
Y. Zhou,
Life span of classical solutions to $\Box u=|u|^{p}$ in two space dimensions, Chin. Ann. Math. Ser. B, 14 (1993), 225-236.
|
[37] |
Y. Zhou,
Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B, 28 (2007), 205-212.
doi: 10.1007/s11401-005-0205-x. |
[38] |
Y. Zhou and W. Han,
Life-span of solutions to critical semilinear wave equations, Comm. Partial Differential Equations, 39 (2014), 439-451.
doi: 10.1080/03605302.2013.863914. |
[1] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[2] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[3] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[4] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[5] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[6] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[7] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[8] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[9] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[10] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[11] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[12] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[13] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[14] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[15] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[16] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[17] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[18] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[19] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[20] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]