-
Previous Article
Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent
- DCDS Home
- This Issue
-
Next Article
Transfers of energy through fast diffusion channels in some resonant PDEs on the circle
On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients
1. | Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA |
2. | Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China |
We show that weak solutions to parabolic equations in divergence form with conormal boundary conditions are continuously differentiable up to the boundary when the leading coefficients have Dini mean oscillation and the lower order coefficients verify certain integrability conditions.
References:
[1] |
P. Acquistapace,
On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.
doi: 10.1007/BF01759640. |
[2] |
V. I. Bogachev and S. V. Shaposhnikov,
Integrability and continuity of solutions to double divergence form equations, Ann. Mat. Pura Appl., 196 (2017), 1609-1635.
doi: 10.1007/s10231-016-0631-2. |
[3] |
M. Christ,
A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.
doi: 10.4064/cm-60-61-2-601-628. |
[4] |
H. Dong,
Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.
doi: 10.1007/s00205-012-0501-z. |
[5] |
H. Dong and Z. Li,
Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients, Trans. Amer. Math. Soc., 373 (2020), 4975-4997.
doi: 10.1090/tran/8042. |
[6] |
H. Dong, J. Lee and S. Kim,
On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, Indiana U. Math. J., 69 (2020), 1815-1853.
doi: 10.1512/iumj.2020.69.8028. |
[7] |
H. Dong, L. Escauriaza and S. Kim,
On $C^1$, $C^2$, and weak type-(1, 1) estimates for linear elliptic operators: Part Ⅱ, Math. Ann., 370 (2018), 447-489.
doi: 10.1007/s00208-017-1603-6. |
[8] |
H. Dong, L. Escauriaza and S. Kim, On $C^{1/2, 1}, C^{1, 2}$, and $C^{0, 0}$ estimates for linear parabolic operators, Preprint, arXiv: 1912.08762. Google Scholar |
[9] |
H. Dong and D. Kim,
On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.
doi: 10.1007/s00205-010-0345-3. |
[10] |
H. Dong and D. Kim,
$L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.
doi: 10.1007/s00526-010-0344-0. |
[11] |
H. Dong and S. Kim,
On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators, Comm. Partial Differential Equations, 42 (2017), 417-435.
doi: 10.1080/03605302.2017.1278773. |
[12] |
H. Dong and H. Zhang,
Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.
doi: 10.1090/tran/6605. |
[13] |
L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[14] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. |
[15] |
T. Kuusi and G. Mingione,
Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.
doi: 10.1016/j.jfa.2012.02.018. |
[16] |
N. V. Krylov,
Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.
doi: 10.1016/j.jfa.2007.04.003. |
[17] |
Y. Y. Li,
On the $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38 (2017), 489-496.
doi: 10.1007/s11401-017-1079-4. |
[18] |
G. M. Lieberman,
Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77-99.
doi: 10.1007/BF01774284. |
[19] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathmetical Socierty: Providence, RI, 1968. |
[20] |
M. I. Mati$\mathop {\rm{l}}\limits^ \vee $čuk and S. D. È$\mathop {\rm{l}}\limits^ \vee $del'man, On parabolic systems with coefficients satisfying Dini's condition, Dokl. Akad. Nauk SSSR, (Russian), 165 1965,482–485. |
[21] |
V. Maz'ya and R. McOwen,
Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), 1137-1168.
doi: 10.1016/j.jde.2010.06.023. |
[22] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ascillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, Princeton, NJ, 1993. |
show all references
References:
[1] |
P. Acquistapace,
On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.
doi: 10.1007/BF01759640. |
[2] |
V. I. Bogachev and S. V. Shaposhnikov,
Integrability and continuity of solutions to double divergence form equations, Ann. Mat. Pura Appl., 196 (2017), 1609-1635.
doi: 10.1007/s10231-016-0631-2. |
[3] |
M. Christ,
A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.
doi: 10.4064/cm-60-61-2-601-628. |
[4] |
H. Dong,
Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.
doi: 10.1007/s00205-012-0501-z. |
[5] |
H. Dong and Z. Li,
Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients, Trans. Amer. Math. Soc., 373 (2020), 4975-4997.
doi: 10.1090/tran/8042. |
[6] |
H. Dong, J. Lee and S. Kim,
On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, Indiana U. Math. J., 69 (2020), 1815-1853.
doi: 10.1512/iumj.2020.69.8028. |
[7] |
H. Dong, L. Escauriaza and S. Kim,
On $C^1$, $C^2$, and weak type-(1, 1) estimates for linear elliptic operators: Part Ⅱ, Math. Ann., 370 (2018), 447-489.
doi: 10.1007/s00208-017-1603-6. |
[8] |
H. Dong, L. Escauriaza and S. Kim, On $C^{1/2, 1}, C^{1, 2}$, and $C^{0, 0}$ estimates for linear parabolic operators, Preprint, arXiv: 1912.08762. Google Scholar |
[9] |
H. Dong and D. Kim,
On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.
doi: 10.1007/s00205-010-0345-3. |
[10] |
H. Dong and D. Kim,
$L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.
doi: 10.1007/s00526-010-0344-0. |
[11] |
H. Dong and S. Kim,
On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators, Comm. Partial Differential Equations, 42 (2017), 417-435.
doi: 10.1080/03605302.2017.1278773. |
[12] |
H. Dong and H. Zhang,
Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.
doi: 10.1090/tran/6605. |
[13] |
L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[14] |
M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. |
[15] |
T. Kuusi and G. Mingione,
Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.
doi: 10.1016/j.jfa.2012.02.018. |
[16] |
N. V. Krylov,
Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.
doi: 10.1016/j.jfa.2007.04.003. |
[17] |
Y. Y. Li,
On the $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38 (2017), 489-496.
doi: 10.1007/s11401-017-1079-4. |
[18] |
G. M. Lieberman,
Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77-99.
doi: 10.1007/BF01774284. |
[19] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathmetical Socierty: Providence, RI, 1968. |
[20] |
M. I. Mati$\mathop {\rm{l}}\limits^ \vee $čuk and S. D. È$\mathop {\rm{l}}\limits^ \vee $del'man, On parabolic systems with coefficients satisfying Dini's condition, Dokl. Akad. Nauk SSSR, (Russian), 165 1965,482–485. |
[21] |
V. Maz'ya and R. McOwen,
Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), 1137-1168.
doi: 10.1016/j.jde.2010.06.023. |
[22] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ascillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, Princeton, NJ, 1993. |
[1] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[2] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[3] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[4] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[5] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[6] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[7] |
Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 |
[8] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[9] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[10] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[11] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[12] |
Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028 |
[13] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[14] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[15] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[16] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[17] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[18] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[19] |
Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026 |
[20] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]