October  2021, 41(10): 4567-4592. doi: 10.3934/dcds.2021049

On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients

1. 

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912, USA

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China

* Corresponding author: Xinghong Pan

Received  October 2020 Revised  February 2021 Published  October 2021 Early access  March 2021

Fund Project: H. Dong was partially supported by the Simons Foundation, grant # 709545. X. Pan is supported by Natural Science Foundation of Jiangsu Province (No. BK20180414) and National Natural Science Foundation of China (No. 11801268)

We show that weak solutions to parabolic equations in divergence form with conormal boundary conditions are continuously differentiable up to the boundary when the leading coefficients have Dini mean oscillation and the lower order coefficients verify certain integrability conditions.

Citation: Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4567-4592. doi: 10.3934/dcds.2021049
References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.  doi: 10.1007/BF01759640.

[2]

V. I. Bogachev and S. V. Shaposhnikov, Integrability and continuity of solutions to double divergence form equations, Ann. Mat. Pura Appl., 196 (2017), 1609-1635.  doi: 10.1007/s10231-016-0631-2.

[3]

M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.  doi: 10.4064/cm-60-61-2-601-628.

[4]

H. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.  doi: 10.1007/s00205-012-0501-z.

[5]

H. Dong and Z. Li, Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients, Trans. Amer. Math. Soc., 373 (2020), 4975-4997.  doi: 10.1090/tran/8042.

[6]

H. DongJ. Lee and S. Kim, On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, Indiana U. Math. J., 69 (2020), 1815-1853.  doi: 10.1512/iumj.2020.69.8028.

[7]

H. DongL. Escauriaza and S. Kim, On $C^1$, $C^2$, and weak type-(1, 1) estimates for linear elliptic operators: Part Ⅱ, Math. Ann., 370 (2018), 447-489.  doi: 10.1007/s00208-017-1603-6.

[8]

H. Dong, L. Escauriaza and S. Kim, On $C^{1/2, 1}, C^{1, 2}$, and $C^{0, 0}$ estimates for linear parabolic operators, Preprint, arXiv: 1912.08762.

[9]

H. Dong and D. Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.

[10]

H. Dong and D. Kim, $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.  doi: 10.1007/s00526-010-0344-0.

[11]

H. Dong and S. Kim, On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators, Comm. Partial Differential Equations, 42 (2017), 417-435.  doi: 10.1080/03605302.2017.1278773.

[12]

H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.  doi: 10.1090/tran/6605.

[13]

L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[14]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.

[15]

T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.  doi: 10.1016/j.jfa.2012.02.018.

[16]

N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.  doi: 10.1016/j.jfa.2007.04.003.

[17]

Y. Y. Li, On the $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38 (2017), 489-496.  doi: 10.1007/s11401-017-1079-4.

[18]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77-99.  doi: 10.1007/BF01774284.

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathmetical Socierty: Providence, RI, 1968.

[20]

M. I. Mati$\mathop {\rm{l}}\limits^ \vee $čuk and S. D. È$\mathop {\rm{l}}\limits^ \vee $del'man, On parabolic systems with coefficients satisfying Dini's condition, Dokl. Akad. Nauk SSSR, (Russian), 165 1965,482–485.

[21]

V. Maz'ya and R. McOwen, Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), 1137-1168.  doi: 10.1016/j.jde.2010.06.023.

[22]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ascillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, Princeton, NJ, 1993.

show all references

References:
[1]

P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.  doi: 10.1007/BF01759640.

[2]

V. I. Bogachev and S. V. Shaposhnikov, Integrability and continuity of solutions to double divergence form equations, Ann. Mat. Pura Appl., 196 (2017), 1609-1635.  doi: 10.1007/s10231-016-0631-2.

[3]

M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.  doi: 10.4064/cm-60-61-2-601-628.

[4]

H. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.  doi: 10.1007/s00205-012-0501-z.

[5]

H. Dong and Z. Li, Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients, Trans. Amer. Math. Soc., 373 (2020), 4975-4997.  doi: 10.1090/tran/8042.

[6]

H. DongJ. Lee and S. Kim, On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, Indiana U. Math. J., 69 (2020), 1815-1853.  doi: 10.1512/iumj.2020.69.8028.

[7]

H. DongL. Escauriaza and S. Kim, On $C^1$, $C^2$, and weak type-(1, 1) estimates for linear elliptic operators: Part Ⅱ, Math. Ann., 370 (2018), 447-489.  doi: 10.1007/s00208-017-1603-6.

[8]

H. Dong, L. Escauriaza and S. Kim, On $C^{1/2, 1}, C^{1, 2}$, and $C^{0, 0}$ estimates for linear parabolic operators, Preprint, arXiv: 1912.08762.

[9]

H. Dong and D. Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.

[10]

H. Dong and D. Kim, $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.  doi: 10.1007/s00526-010-0344-0.

[11]

H. Dong and S. Kim, On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators, Comm. Partial Differential Equations, 42 (2017), 417-435.  doi: 10.1080/03605302.2017.1278773.

[12]

H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.  doi: 10.1090/tran/6605.

[13]

L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[14]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.

[15]

T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.  doi: 10.1016/j.jfa.2012.02.018.

[16]

N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.  doi: 10.1016/j.jfa.2007.04.003.

[17]

Y. Y. Li, On the $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38 (2017), 489-496.  doi: 10.1007/s11401-017-1079-4.

[18]

G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77-99.  doi: 10.1007/BF01774284.

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathmetical Socierty: Providence, RI, 1968.

[20]

M. I. Mati$\mathop {\rm{l}}\limits^ \vee $čuk and S. D. È$\mathop {\rm{l}}\limits^ \vee $del'man, On parabolic systems with coefficients satisfying Dini's condition, Dokl. Akad. Nauk SSSR, (Russian), 165 1965,482–485.

[21]

V. Maz'ya and R. McOwen, Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), 1137-1168.  doi: 10.1016/j.jde.2010.06.023.

[22]

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ascillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, Princeton, NJ, 1993.

[1]

Sun-Sig Byun, Lihe Wang. $W^{1,p}$ regularity for the conormal derivative problem with parabolic BMO nonlinearity in reifenberg domains. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 617-637. doi: 10.3934/dcds.2008.20.617

[2]

Sergio Polidoro, Annalaura Rebucci, Bianca Stroffolini. Schauder type estimates for degenerate Kolmogorov equations with Dini continuous coefficients. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1385-1416. doi: 10.3934/cpaa.2022023

[3]

Doyoon Kim, Seungjin Ryu. The weak maximum principle for second-order elliptic and parabolic conormal derivative problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 493-510. doi: 10.3934/cpaa.2020024

[4]

Gary Lieberman. Oblique derivative problems for elliptic and parabolic equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2409-2444. doi: 10.3934/cpaa.2013.12.2409

[5]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[6]

Jongkeun Choi, Hongjie Dong, Doyoon Kim. Conormal derivative problems for stationary Stokes system in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2349-2374. doi: 10.3934/dcds.2018097

[7]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[8]

Abdullah Özbekler, A. Zafer. Second order oscillation of mixed nonlinear dynamic equations with several positive and negative coefficients. Conference Publications, 2011, 2011 (Special) : 1167-1175. doi: 10.3934/proc.2011.2011.1167

[9]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[10]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[11]

Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177

[12]

Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1495-1511. doi: 10.3934/dcdss.2020084

[13]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[14]

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081

[15]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[16]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 609-627. doi: 10.3934/dcdss.2020033

[17]

Marissa Condon, Alfredo Deaño, Arieh Iserles. On systems of differential equations with extrinsic oscillation. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1345-1367. doi: 10.3934/dcds.2010.28.1345

[18]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[19]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[20]

Maria Alessandra Ragusa. Parabolic systems with non continuous coefficients. Conference Publications, 2003, 2003 (Special) : 727-733. doi: 10.3934/proc.2003.2003.727

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (246)
  • HTML views (212)
  • Cited by (0)

Other articles
by authors

[Back to Top]