\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients

  • * Corresponding author: Xinghong Pan

    * Corresponding author: Xinghong Pan

H. Dong was partially supported by the Simons Foundation, grant # 709545. X. Pan is supported by Natural Science Foundation of Jiangsu Province (No. BK20180414) and National Natural Science Foundation of China (No. 11801268)

Abstract Full Text(HTML) Related Papers Cited by
  • We show that weak solutions to parabolic equations in divergence form with conormal boundary conditions are continuously differentiable up to the boundary when the leading coefficients have Dini mean oscillation and the lower order coefficients verify certain integrability conditions.

    Mathematics Subject Classification: Primary: 35K20, 35B45; Secondary: 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Acquistapace, On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.  doi: 10.1007/BF01759640.
    [2] V. I. Bogachev and S. V. Shaposhnikov, Integrability and continuity of solutions to double divergence form equations, Ann. Mat. Pura Appl., 196 (2017), 1609-1635.  doi: 10.1007/s10231-016-0631-2.
    [3] M. Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.  doi: 10.4064/cm-60-61-2-601-628.
    [4] H. Dong, Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Ration. Mech. Anal., 205 (2012), 119-149.  doi: 10.1007/s00205-012-0501-z.
    [5] H. Dong and Z. Li, Classical solutions of oblique derivative problem in nonsmooth domains with mean Dini coefficients, Trans. Amer. Math. Soc., 373 (2020), 4975-4997.  doi: 10.1090/tran/8042.
    [6] H. DongJ. Lee and S. Kim, On conormal and oblique derivative problem for elliptic equations with Dini mean oscillation coefficients, Indiana U. Math. J., 69 (2020), 1815-1853.  doi: 10.1512/iumj.2020.69.8028.
    [7] H. DongL. Escauriaza and S. Kim, On $C^1$, $C^2$, and weak type-(1, 1) estimates for linear elliptic operators: Part Ⅱ, Math. Ann., 370 (2018), 447-489.  doi: 10.1007/s00208-017-1603-6.
    [8] H. Dong, L. Escauriaza and S. Kim, On $C^{1/2, 1}, C^{1, 2}$, and $C^{0, 0}$ estimates for linear parabolic operators, Preprint, arXiv: 1912.08762.
    [9] H. Dong and D. Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.  doi: 10.1007/s00205-010-0345-3.
    [10] H. Dong and D. Kim, $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.  doi: 10.1007/s00526-010-0344-0.
    [11] H. Dong and S. Kim, On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators, Comm. Partial Differential Equations, 42 (2017), 417-435.  doi: 10.1080/03605302.2017.1278773.
    [12] H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems with time irregular coefficients, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.  doi: 10.1090/tran/6605.
    [13] L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [14] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983.
    [15] T. Kuusi and G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205-4269.  doi: 10.1016/j.jfa.2012.02.018.
    [16] N. V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.  doi: 10.1016/j.jfa.2007.04.003.
    [17] Y. Y. Li, On the $C^1$ regularity of solutions to divergence form elliptic systems with Dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38 (2017), 489-496.  doi: 10.1007/s11401-017-1079-4.
    [18] G. M. Lieberman, Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions, Ann. Mat. Pura Appl., 148 (1987), 77-99.  doi: 10.1007/BF01774284.
    [19] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural' ceva, Linear and Quasi-Linear Equations of Parabolic Type, American Mathmetical Socierty: Providence, RI, 1968.
    [20] M. I. Mati$\mathop {\rm{l}}\limits^ \vee $čuk and S. D. È$\mathop {\rm{l}}\limits^ \vee $del'man, On parabolic systems with coefficients satisfying Dini's condition, Dokl. Akad. Nauk SSSR, (Russian), 165 1965,482–485.
    [21] V. Maz'ya and R. McOwen, Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Differential Equations, 250 (2011), 1137-1168.  doi: 10.1016/j.jde.2010.06.023.
    [22] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Ascillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, Ⅲ. Princeton University Press, Princeton, NJ, 1993.
  • 加载中
SHARE

Article Metrics

HTML views(370) PDF downloads(278) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return