doi: 10.3934/dcds.2021050

Variational relations for metric mean dimension and rate distortion dimension

LCSM (Ministry of Education), School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China

Received  November 2020 Revised  January 2021 Published  March 2021

Fund Project: This work was supported by National Nature Science Foundation of China (12001192)

Recently, Lindenstrauss and Tsukamoto established a double variational principle between mean dimension theory and rate distortion theory. The main purpose of this paper is to develop some new variational relations for the metric mean dimension and the rate distortion dimension. Inspired by the dimension theory of topological entropy, we introduce and explore the Bowen metric mean dimension of subsets. Besides, we give some new characterizations for the rate distortion dimension. Finally, the relation between the Bowen metric mean dimension of the set of generic points and the rate distortion dimension is also investigated.

Citation: Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021050
References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[3]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro, (1981), in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.  Google Scholar

[4]

E. Chen, D. Dou and D. Zheng, Variational principles for amenable metric mean dimensions, preprint, arXiv: 1708.02087, (2017). Google Scholar

[5]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[6]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom., 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, IHES Pub., 51 (1980), 137-173.   Google Scholar

[8]

E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean dimension: Variational principle, IEEE Trans. Inf. Theory, 64 (2018), 3590-3609.  doi: 10.1109/TIT.2018.2806219.  Google Scholar

[9]

E. Lindenstrauss and M. Tsukamoto, Double variational principle for mean dimension, Geom. Funct. Anal., 29 (2019), 1048-1109.  doi: 10.1007/s00039-019-00501-8.  Google Scholar

[10]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[11] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511623813.  Google Scholar
[12] Y. B. Pesin, Dimension theory in dynamical systems, Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[13]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.  Google Scholar

[14]

M. Tsukamoto, Double variational principle for mean dimension with potential, Adv. Math., 361 (2020), 106935, 53 pp. doi: 10.1016/j.aim.2019.106935.  Google Scholar

[15]

A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, arXiv: 1707.05762. Google Scholar

[16]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York–Berlin, 1982.  Google Scholar

show all references

References:
[1]

R. L. AdlerA. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[3]

M. Brin and A. Katok, On local entropy, in Geometric Dynamics, Rio de Janeiro, (1981), in Lecture Notes in Math., Springer, Berlin, 1007 (1983), 30–38. doi: 10.1007/BFb0061408.  Google Scholar

[4]

E. Chen, D. Dou and D. Zheng, Variational principles for amenable metric mean dimensions, preprint, arXiv: 1708.02087, (2017). Google Scholar

[5]

D.-J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[6]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps, I. Math. Phys. Anal. Geom., 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[7]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, IHES Pub., 51 (1980), 137-173.   Google Scholar

[8]

E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean dimension: Variational principle, IEEE Trans. Inf. Theory, 64 (2018), 3590-3609.  doi: 10.1109/TIT.2018.2806219.  Google Scholar

[9]

E. Lindenstrauss and M. Tsukamoto, Double variational principle for mean dimension, Geom. Funct. Anal., 29 (2019), 1048-1109.  doi: 10.1007/s00039-019-00501-8.  Google Scholar

[10]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[11] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.  doi: 10.1017/CBO9780511623813.  Google Scholar
[12] Y. B. Pesin, Dimension theory in dynamical systems, Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.  doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar
[13]

C.-E. Pfister and W. G. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.  Google Scholar

[14]

M. Tsukamoto, Double variational principle for mean dimension with potential, Adv. Math., 361 (2020), 106935, 53 pp. doi: 10.1016/j.aim.2019.106935.  Google Scholar

[15]

A. Velozo and R. Velozo, Rate distortion theory, metric mean dimension and measure theoretic entropy, arXiv: 1707.05762. Google Scholar

[16]

P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York–Berlin, 1982.  Google Scholar

[1]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044

[2]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[3]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054

[4]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[5]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[6]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[7]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[8]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[9]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[10]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[11]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[12]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[14]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[15]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[16]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[17]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[18]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[19]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[20]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (23)
  • HTML views (60)
  • Cited by (0)

Other articles
by authors

[Back to Top]