doi: 10.3934/dcds.2021051

Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains

1. 

Graduate School of Informatics and Engineering, The University of Electro-Communications, 5-1 Chofugaoka 1-chome, Chofu, Tokyo 182-8585, Japan

2. 

School of Mathematical Sciences, Tongji University, No.1239, Siping Road, Shanghai (200092), China

* Corresponding author: Xin Zhang

Received  January 2020 Revised  January 2021 Published  April 2021

Fund Project: The first author was supported by JSPS KAKENHI Grant Number JP17K14224, and the second author was supported by the Top Global University Project and the Fundamental Research Funds for the Central Universities

This paper shows the unique solvability of elliptic problems associated with two-phase incompressible flows, which are governed by the two-phase Navier-Stokes equations with a sharp moving interface, in unbounded domains such as the whole space separated by a compact interface and the whole space separated by a non-compact interface. As a by-product, we obtain the Helmholtz-Weyl decomposition for two-phase incompressible flows.

Citation: Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021051
References:
[1]

T. Abe and Y. Shibata, On a gresolvent estimate of the Stokes equation on an infinite layer. II. $\lambda = 0$ case, J. Math. Fluid Mech., 5 (2003), 245-274.  doi: 10.1007/s00021-003-0075-5.  Google Scholar

[2]

H. Abels, Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279 (2006), 351-367.  doi: 10.1002/mana.200310365.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, $2^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[4]

E. DiBenedetto, Real Analysis, $2^{nd}$ edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser, 2016. doi: 10.1007/978-1-4939-4005-9.  Google Scholar

[5]

E. FabesO. Mendez and M. Mitrea., Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[6]

R. FarwigH. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.  doi: 10.1007/BF02588049.  Google Scholar

[7]

R. FarwigH. Kozono and H. Sohr, On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), 88 (2007), 239-248.  doi: 10.1007/s00013-006-1910-8.  Google Scholar

[8]

R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643.  doi: 10.2969/jmsj/04640607.  Google Scholar

[9]

R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-spaces, Analysis, 16 (1996), 1-26.  doi: 10.1524/anly.1996.16.1.1.  Google Scholar

[10]

D. Fujiwara and H. Morimoto, An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[11]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, $2^{nd}$ edition, Springer Monogr. Math. Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[12]

J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.  doi: 10.1016/j.jfa.2010.07.005.  Google Scholar

[13]

M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., 356 (2013), 737-792. doi: 10.1007/s00208-012-0860-7.  Google Scholar

[14]

S. Maryani and H. Saito, On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations, Differential Integral Equations, 30 (2017), 1-52.   Google Scholar

[15]

V. N. Maslennikova and M. E. Bogovskiǐ, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.  Google Scholar

[16]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.  doi: 10.32917/hmj/1206133879.  Google Scholar

[17]

T. Miyakawa, The Helmholtz decomposition of vector fields in some unbounded domains, Math. J. Toyama Univ., 17 (1994), 115-149.   Google Scholar

[18]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[19]

H. Saito, Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, J. Differential Equations, 264 (2018), 1475-1520.  doi: 10.1016/j.jde.2017.09.045.  Google Scholar

[20]

H. SaitoY. Shibata and X. Zhang, Some free boundary problem for two phase inhomogeneous incompressible flow, SIAM J. Math. Anal., 52 (2020), 3397-3443.  doi: 10.1137/18M1225239.  Google Scholar

[21]

K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47(5) (2015), 3963-3992.  doi: 10.1137/140970628.  Google Scholar

[22]

Y. Shibata, Introduction to the Mathematical Theory of Fluid Mechanics (Japanese), in press. Google Scholar

[23]

Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.  doi: 10.1007/s00021-012-0130-1.  Google Scholar

[24]

Y. Shibata, On the local wellposedness of free boundary problem for the {N}avier-Stokes equations in an exterior domain, Commun. Pure Appl. Anal., 17 (2018), 1681-1721.  doi: 10.3934/cpaa.2018081.  Google Scholar

[25]

Y. Shibata and S. Shimizu, On the maximal ${L}_p$-${L}_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561-626.  doi: 10.2969/jmsj/06420561.  Google Scholar

[26]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992, 1-35. doi: 10.1142/9789814503594_0001.  Google Scholar

[27]

C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, 360, Longman, Harlow, 1996.  Google Scholar

[28]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2013.  Google Scholar

[29]

V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231.   Google Scholar

[30]

S. Szufla, On the Hammerstein integral equation with weakly singular kernel, Funkcial. Ekvac., 34 (1991), 279-285.   Google Scholar

[31]

H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.  doi: 10.1215/S0012-7094-40-00725-6.  Google Scholar

show all references

References:
[1]

T. Abe and Y. Shibata, On a gresolvent estimate of the Stokes equation on an infinite layer. II. $\lambda = 0$ case, J. Math. Fluid Mech., 5 (2003), 245-274.  doi: 10.1007/s00021-003-0075-5.  Google Scholar

[2]

H. Abels, Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279 (2006), 351-367.  doi: 10.1002/mana.200310365.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, $2^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.  Google Scholar

[4]

E. DiBenedetto, Real Analysis, $2^{nd}$ edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser, 2016. doi: 10.1007/978-1-4939-4005-9.  Google Scholar

[5]

E. FabesO. Mendez and M. Mitrea., Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.  Google Scholar

[6]

R. FarwigH. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.  doi: 10.1007/BF02588049.  Google Scholar

[7]

R. FarwigH. Kozono and H. Sohr, On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), 88 (2007), 239-248.  doi: 10.1007/s00013-006-1910-8.  Google Scholar

[8]

R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643.  doi: 10.2969/jmsj/04640607.  Google Scholar

[9]

R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-spaces, Analysis, 16 (1996), 1-26.  doi: 10.1524/anly.1996.16.1.1.  Google Scholar

[10]

D. Fujiwara and H. Morimoto, An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.   Google Scholar

[11]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, $2^{nd}$ edition, Springer Monogr. Math. Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[12]

J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.  doi: 10.1016/j.jfa.2010.07.005.  Google Scholar

[13]

M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., 356 (2013), 737-792. doi: 10.1007/s00208-012-0860-7.  Google Scholar

[14]

S. Maryani and H. Saito, On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations, Differential Integral Equations, 30 (2017), 1-52.   Google Scholar

[15]

V. N. Maslennikova and M. E. Bogovskiǐ, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.  Google Scholar

[16]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.  doi: 10.32917/hmj/1206133879.  Google Scholar

[17]

T. Miyakawa, The Helmholtz decomposition of vector fields in some unbounded domains, Math. J. Toyama Univ., 17 (1994), 115-149.   Google Scholar

[18]

J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27698-4.  Google Scholar

[19]

H. Saito, Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, J. Differential Equations, 264 (2018), 1475-1520.  doi: 10.1016/j.jde.2017.09.045.  Google Scholar

[20]

H. SaitoY. Shibata and X. Zhang, Some free boundary problem for two phase inhomogeneous incompressible flow, SIAM J. Math. Anal., 52 (2020), 3397-3443.  doi: 10.1137/18M1225239.  Google Scholar

[21]

K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47(5) (2015), 3963-3992.  doi: 10.1137/140970628.  Google Scholar

[22]

Y. Shibata, Introduction to the Mathematical Theory of Fluid Mechanics (Japanese), in press. Google Scholar

[23]

Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.  doi: 10.1007/s00021-012-0130-1.  Google Scholar

[24]

Y. Shibata, On the local wellposedness of free boundary problem for the {N}avier-Stokes equations in an exterior domain, Commun. Pure Appl. Anal., 17 (2018), 1681-1721.  doi: 10.3934/cpaa.2018081.  Google Scholar

[25]

Y. Shibata and S. Shimizu, On the maximal ${L}_p$-${L}_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561-626.  doi: 10.2969/jmsj/06420561.  Google Scholar

[26]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992, 1-35. doi: 10.1142/9789814503594_0001.  Google Scholar

[27]

C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, 360, Longman, Harlow, 1996.  Google Scholar

[28]

H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2013.  Google Scholar

[29]

V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231.   Google Scholar

[30]

S. Szufla, On the Hammerstein integral equation with weakly singular kernel, Funkcial. Ekvac., 34 (1991), 279-285.   Google Scholar

[31]

H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.  doi: 10.1215/S0012-7094-40-00725-6.  Google Scholar

[1]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[4]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[5]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[6]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[7]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[8]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

[9]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[10]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[11]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[14]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[15]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[16]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[17]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[18]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[19]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[20]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]