-
Previous Article
Transfers of energy through fast diffusion channels in some resonant PDEs on the circle
- DCDS Home
- This Issue
-
Next Article
On the critical decay for the wave equation with a cubic convolution in 3D
Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains
1. | Graduate School of Informatics and Engineering, The University of Electro-Communications, 5-1 Chofugaoka 1-chome, Chofu, Tokyo 182-8585, Japan |
2. | School of Mathematical Sciences, Tongji University, No.1239, Siping Road, Shanghai (200092), China |
This paper shows the unique solvability of elliptic problems associated with two-phase incompressible flows, which are governed by the two-phase Navier-Stokes equations with a sharp moving interface, in unbounded domains such as the whole space separated by a compact interface and the whole space separated by a non-compact interface. As a by-product, we obtain the Helmholtz-Weyl decomposition for two-phase incompressible flows.
References:
[1] |
T. Abe and Y. Shibata,
On a gresolvent estimate of the Stokes equation on an infinite layer. II. $\lambda = 0$ case, J. Math. Fluid Mech., 5 (2003), 245-274.
doi: 10.1007/s00021-003-0075-5. |
[2] |
H. Abels,
Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279 (2006), 351-367.
doi: 10.1002/mana.200310365. |
[3] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, $2^{nd}$
edition, Elsevier/Academic Press, Amsterdam, 2003. |
[4] |
E. DiBenedetto, Real Analysis, $2^{nd}$ edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser, 2016.
doi: 10.1007/978-1-4939-4005-9. |
[5] |
E. Fabes, O. Mendez and M. Mitrea.,
Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.
doi: 10.1006/jfan.1998.3316. |
[6] |
R. Farwig, H. Kozono and H. Sohr,
An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.
doi: 10.1007/BF02588049. |
[7] |
R. Farwig, H. Kozono and H. Sohr,
On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), 88 (2007), 239-248.
doi: 10.1007/s00013-006-1910-8. |
[8] |
R. Farwig and H. Sohr,
Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643.
doi: 10.2969/jmsj/04640607. |
[9] |
R. Farwig and H. Sohr,
Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-spaces, Analysis, 16 (1996), 1-26.
doi: 10.1524/anly.1996.16.1.1. |
[10] |
D. Fujiwara and H. Morimoto,
An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.
|
[11] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, $2^{nd}$ edition, Springer Monogr. Math. Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[12] |
J. Geng and Z. Shen,
The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.
doi: 10.1016/j.jfa.2010.07.005. |
[13] |
M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase
Navier-Stokes equations with surface tension, Math. Ann., 356 (2013), 737-792.
doi: 10.1007/s00208-012-0860-7. |
[14] |
S. Maryani and H. Saito,
On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations, Differential Integral Equations, 30 (2017), 1-52.
|
[15] |
V. N. Maslennikova and M. E. Bogovskiǐ,
Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.
doi: 10.1007/BF02925141. |
[16] |
T. Miyakawa,
On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
doi: 10.32917/hmj/1206133879. |
[17] |
T. Miyakawa,
The Helmholtz decomposition of vector fields in some unbounded domains, Math. J. Toyama Univ., 17 (1994), 115-149.
|
[18] |
J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser/Springer, Cham, 2016.
doi: 10.1007/978-3-319-27698-4. |
[19] |
H. Saito,
Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, J. Differential Equations, 264 (2018), 1475-1520.
doi: 10.1016/j.jde.2017.09.045. |
[20] |
H. Saito, Y. Shibata and X. Zhang,
Some free boundary problem for two phase inhomogeneous incompressible flow, SIAM J. Math. Anal., 52 (2020), 3397-3443.
doi: 10.1137/18M1225239. |
[21] |
K. Schade and Y. Shibata,
On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47(5) (2015), 3963-3992.
doi: 10.1137/140970628. |
[22] |
Y. Shibata, Introduction to the Mathematical Theory of Fluid Mechanics (Japanese), in press. Google Scholar |
[23] |
Y. Shibata,
Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.
doi: 10.1007/s00021-012-0130-1. |
[24] |
Y. Shibata,
On the local wellposedness of free boundary problem for the {N}avier-Stokes equations in an exterior domain, Commun. Pure Appl. Anal., 17 (2018), 1681-1721.
doi: 10.3934/cpaa.2018081. |
[25] |
Y. Shibata and S. Shimizu,
On the maximal ${L}_p$-${L}_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561-626.
doi: 10.2969/jmsj/06420561. |
[26] |
C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992, 1-35.
doi: 10.1142/9789814503594_0001. |
[27] |
C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, 360, Longman, Harlow, 1996. |
[28] |
H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2013. |
[29] |
V. A. Solonnikov,
Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231.
|
[30] |
S. Szufla,
On the Hammerstein integral equation with weakly singular kernel, Funkcial. Ekvac., 34 (1991), 279-285.
|
[31] |
H. Weyl,
The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.
doi: 10.1215/S0012-7094-40-00725-6. |
show all references
References:
[1] |
T. Abe and Y. Shibata,
On a gresolvent estimate of the Stokes equation on an infinite layer. II. $\lambda = 0$ case, J. Math. Fluid Mech., 5 (2003), 245-274.
doi: 10.1007/s00021-003-0075-5. |
[2] |
H. Abels,
Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279 (2006), 351-367.
doi: 10.1002/mana.200310365. |
[3] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, $2^{nd}$
edition, Elsevier/Academic Press, Amsterdam, 2003. |
[4] |
E. DiBenedetto, Real Analysis, $2^{nd}$ edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser, 2016.
doi: 10.1007/978-1-4939-4005-9. |
[5] |
E. Fabes, O. Mendez and M. Mitrea.,
Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.
doi: 10.1006/jfan.1998.3316. |
[6] |
R. Farwig, H. Kozono and H. Sohr,
An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.
doi: 10.1007/BF02588049. |
[7] |
R. Farwig, H. Kozono and H. Sohr,
On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), 88 (2007), 239-248.
doi: 10.1007/s00013-006-1910-8. |
[8] |
R. Farwig and H. Sohr,
Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643.
doi: 10.2969/jmsj/04640607. |
[9] |
R. Farwig and H. Sohr,
Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-spaces, Analysis, 16 (1996), 1-26.
doi: 10.1524/anly.1996.16.1.1. |
[10] |
D. Fujiwara and H. Morimoto,
An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700.
|
[11] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, $2^{nd}$ edition, Springer Monogr. Math. Springer, New York, 2011.
doi: 10.1007/978-0-387-09620-9. |
[12] |
J. Geng and Z. Shen,
The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.
doi: 10.1016/j.jfa.2010.07.005. |
[13] |
M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase
Navier-Stokes equations with surface tension, Math. Ann., 356 (2013), 737-792.
doi: 10.1007/s00208-012-0860-7. |
[14] |
S. Maryani and H. Saito,
On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations, Differential Integral Equations, 30 (2017), 1-52.
|
[15] |
V. N. Maslennikova and M. E. Bogovskiǐ,
Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.
doi: 10.1007/BF02925141. |
[16] |
T. Miyakawa,
On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
doi: 10.32917/hmj/1206133879. |
[17] |
T. Miyakawa,
The Helmholtz decomposition of vector fields in some unbounded domains, Math. J. Toyama Univ., 17 (1994), 115-149.
|
[18] |
J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser/Springer, Cham, 2016.
doi: 10.1007/978-3-319-27698-4. |
[19] |
H. Saito,
Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, J. Differential Equations, 264 (2018), 1475-1520.
doi: 10.1016/j.jde.2017.09.045. |
[20] |
H. Saito, Y. Shibata and X. Zhang,
Some free boundary problem for two phase inhomogeneous incompressible flow, SIAM J. Math. Anal., 52 (2020), 3397-3443.
doi: 10.1137/18M1225239. |
[21] |
K. Schade and Y. Shibata,
On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47(5) (2015), 3963-3992.
doi: 10.1137/140970628. |
[22] |
Y. Shibata, Introduction to the Mathematical Theory of Fluid Mechanics (Japanese), in press. Google Scholar |
[23] |
Y. Shibata,
Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.
doi: 10.1007/s00021-012-0130-1. |
[24] |
Y. Shibata,
On the local wellposedness of free boundary problem for the {N}avier-Stokes equations in an exterior domain, Commun. Pure Appl. Anal., 17 (2018), 1681-1721.
doi: 10.3934/cpaa.2018081. |
[25] |
Y. Shibata and S. Shimizu,
On the maximal ${L}_p$-${L}_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561-626.
doi: 10.2969/jmsj/06420561. |
[26] |
C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992, 1-35.
doi: 10.1142/9789814503594_0001. |
[27] |
C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, 360, Longman, Harlow, 1996. |
[28] |
H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2013. |
[29] |
V. A. Solonnikov,
Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231.
|
[30] |
S. Szufla,
On the Hammerstein integral equation with weakly singular kernel, Funkcial. Ekvac., 34 (1991), 279-285.
|
[31] |
H. Weyl,
The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.
doi: 10.1215/S0012-7094-40-00725-6. |
[1] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[2] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[3] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[4] |
Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019 |
[5] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[6] |
Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070 |
[7] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[8] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394 |
[9] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[10] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[11] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[14] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[15] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[16] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[17] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[18] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[19] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[20] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]