doi: 10.3934/dcds.2021052

A new approach to MGT-thermoviscoelasticity

1. 

Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy

2. 

Universitat de Girona - Departament d'Informàtica, Matemàtica Aplicada i Estadística, C. Maria Aurèlia Capmany, 41 (Campus Montilivi), 17003 Girona, Spain

3. 

Universitat Politècnica de Catalunya - Departament de Matemàtiques, C. Colom 11, 08222 Terrassa, Barcelona, Spain

* Corresponding author: Monica Conti

Received  September 2020 Revised  January 2021 Published  April 2021

In this paper we discuss some thermoelastic and thermoviscoelastic models obtained from the Gurtin theory, based on the invariance of the entropy under time reversal. We derive differential systems where the temperature and the velocity are ruled by generalized versions of the Moore-Gibson-Thompson equation. In the one-dimensional case, we provide a complete analysis of the evolution, establishing an existence and uniqueness result valid for any choice of the constitutive parameters. This result turns out to be new also for the MGT equation itself. Then, under suitable assumptions on the parameters, corresponding to the subcritical regime of the system, we prove the exponential stability of the related semigroup.

Citation: Monica Conti, Vittorino Pata, Marta Pellicer, Ramon Quintanilla. A new approach to MGT-thermoviscoelasticity. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021052
References:
[1]

R. Borghesani and A. Morro, Relaxation functions and time-reversal invariance in thermal and electric conduction, Ann. Mat. Pura Appl., 114 (1977), 271-288.  doi: 10.1007/BF02413790.  Google Scholar

[2]

F. Bucci and L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: A perspective via wave equations with memory, J. Evol. Equ., 20 (2020), 837-867.  doi: 10.1007/s00028-019-00549-x.  Google Scholar

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. Inf. Sci., 9 (2015), 2233-2238.  doi: 10.12785/amis.  Google Scholar

[4]

M. ContiV. PataM. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.  doi: 10.1016/j.jde.2020.05.043.  Google Scholar

[5]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/ASY-191576.  Google Scholar

[6]

F. Dell'OroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.  Google Scholar

[7]

F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.  Google Scholar

[8]

F. Dell'Oro and V. Pata, On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math., 85 (2017), 215-234.  doi: 10.1007/s00032-017-0270-0.  Google Scholar

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 4 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.  Google Scholar

[10]

A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1-7.   Google Scholar

[11]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.  doi: 10.1080/01495739208946136.  Google Scholar

[12]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.  doi: 10.1007/BF00044969.  Google Scholar

[13]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. I. Classical continuum physics, Proc. Royal Society London A, 448 (1995), 335-356.  doi: 10.1098/rspa.1995.0020.  Google Scholar

[14]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. II. Generalized continua, Proc. Royal Society London A, 448 (1995), 357-377.  doi: 10.1098/rspa.1995.0021.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. III. Mixtures of interacting continua, Proc. Royal Society London A, 448 (1995), 379-388.  doi: 10.1098/rspa.1995.0022.  Google Scholar

[16]

M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 44 (1971/72), 387-399.  doi: 10.1007/BF00249968.  Google Scholar

[17]

D. Ieȿan, On the theory of thermoelasticity without energy dissipation, J. Thermal Stresses, 21 (1998), 295-307.  doi: 10.1080/01495739808956148.  Google Scholar

[18]

D. Ieȿan, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 631-656.  doi: 10.1098/rspa.2007.0264.  Google Scholar

[19]

D. Ieȿan and A. Scalia, Some theorems in the theory of thermoviscoelasticity, J. Thermal Stresses, 12 (1989), 225-239.  doi: 10.1080/01495738908961963.  Google Scholar

[20]

R. J. Knops and E. W. Wilkes, Theory of Elastic Stability, Encyclopedia of Physics VIa/3, Springer-Verlag, Berlin, 1973,125-302.  Google Scholar

[21]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988.   Google Scholar

[22]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.  Google Scholar

[23]

M. C. LeseduarteA. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375-391.  doi: 10.3934/dcdsb.2010.13.375.  Google Scholar

[24]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309.   Google Scholar

[25]

A. Magaña and R. Quintanilla, On the existence and uniqueness in phase-lag thermoelasticity, Meccanica, 53 (2018), 125-134.  doi: 10.1007/s11012-017-0727-9.  Google Scholar

[26]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.  Google Scholar

[27]

A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), n.112573. doi: 10.1016/j.cam.2019.112573.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

M. Pellicer and R. Quintanilla, On uniqueness and instability for some thermoemechanical problems involving the Moore-Gibson-Thompson equation, Z. Angew. Math. Phys, 71 (2020). doi: 10.1007/s00033-020-01307-7.  Google Scholar

[30]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-479.  doi: 10.1007/s00245-017-9471-8.  Google Scholar

[31]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation, Evol. Equ. Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.  Google Scholar

[32]

J. Prüss, On the spectrum of ${C}_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.  Google Scholar

[33]

R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020-4031.  doi: 10.1177/1081286519862007.  Google Scholar

[34]

A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.  Google Scholar

[35]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. Google Scholar

show all references

References:
[1]

R. Borghesani and A. Morro, Relaxation functions and time-reversal invariance in thermal and electric conduction, Ann. Mat. Pura Appl., 114 (1977), 271-288.  doi: 10.1007/BF02413790.  Google Scholar

[2]

F. Bucci and L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: A perspective via wave equations with memory, J. Evol. Equ., 20 (2020), 837-867.  doi: 10.1007/s00028-019-00549-x.  Google Scholar

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. Inf. Sci., 9 (2015), 2233-2238.  doi: 10.12785/amis.  Google Scholar

[4]

M. ContiV. PataM. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.  doi: 10.1016/j.jde.2020.05.043.  Google Scholar

[5]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/ASY-191576.  Google Scholar

[6]

F. Dell'OroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.  Google Scholar

[7]

F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.  Google Scholar

[8]

F. Dell'Oro and V. Pata, On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math., 85 (2017), 215-234.  doi: 10.1007/s00032-017-0270-0.  Google Scholar

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 4 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.  Google Scholar

[10]

A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1-7.   Google Scholar

[11]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.  doi: 10.1080/01495739208946136.  Google Scholar

[12]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.  doi: 10.1007/BF00044969.  Google Scholar

[13]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. I. Classical continuum physics, Proc. Royal Society London A, 448 (1995), 335-356.  doi: 10.1098/rspa.1995.0020.  Google Scholar

[14]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. II. Generalized continua, Proc. Royal Society London A, 448 (1995), 357-377.  doi: 10.1098/rspa.1995.0021.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. III. Mixtures of interacting continua, Proc. Royal Society London A, 448 (1995), 379-388.  doi: 10.1098/rspa.1995.0022.  Google Scholar

[16]

M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 44 (1971/72), 387-399.  doi: 10.1007/BF00249968.  Google Scholar

[17]

D. Ieȿan, On the theory of thermoelasticity without energy dissipation, J. Thermal Stresses, 21 (1998), 295-307.  doi: 10.1080/01495739808956148.  Google Scholar

[18]

D. Ieȿan, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 631-656.  doi: 10.1098/rspa.2007.0264.  Google Scholar

[19]

D. Ieȿan and A. Scalia, Some theorems in the theory of thermoviscoelasticity, J. Thermal Stresses, 12 (1989), 225-239.  doi: 10.1080/01495738908961963.  Google Scholar

[20]

R. J. Knops and E. W. Wilkes, Theory of Elastic Stability, Encyclopedia of Physics VIa/3, Springer-Verlag, Berlin, 1973,125-302.  Google Scholar

[21]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988.   Google Scholar

[22]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.  Google Scholar

[23]

M. C. LeseduarteA. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375-391.  doi: 10.3934/dcdsb.2010.13.375.  Google Scholar

[24]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309.   Google Scholar

[25]

A. Magaña and R. Quintanilla, On the existence and uniqueness in phase-lag thermoelasticity, Meccanica, 53 (2018), 125-134.  doi: 10.1007/s11012-017-0727-9.  Google Scholar

[26]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.  Google Scholar

[27]

A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), n.112573. doi: 10.1016/j.cam.2019.112573.  Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[29]

M. Pellicer and R. Quintanilla, On uniqueness and instability for some thermoemechanical problems involving the Moore-Gibson-Thompson equation, Z. Angew. Math. Phys, 71 (2020). doi: 10.1007/s00033-020-01307-7.  Google Scholar

[30]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-479.  doi: 10.1007/s00245-017-9471-8.  Google Scholar

[31]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation, Evol. Equ. Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.  Google Scholar

[32]

J. Prüss, On the spectrum of ${C}_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.  Google Scholar

[33]

R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020-4031.  doi: 10.1177/1081286519862007.  Google Scholar

[34]

A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.  Google Scholar

[35]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972. Google Scholar

[1]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[2]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[3]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[4]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[5]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[9]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[10]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[11]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[12]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[13]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[14]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[15]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[16]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[17]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[18]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[19]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[20]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (21)
  • HTML views (29)
  • Cited by (0)

[Back to Top]