doi: 10.3934/dcds.2021056

On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

2. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

* Corresponding author: jyang2019@gzhu.edu.cn

Received  July 2020 Published  March 2021

Fund Project: The authors are supported by the grants CCNU18CXTD04 and NSFC (No. 11771167 & No. 11831009)

For the coupled Ginzburg-Landau system in
$ {\mathbb R}^2 $
$ \begin{align*} \begin{cases} -\Delta w^+ +\Big[A_+\big(|w^+|^2-{t^+}^2\big)+B\big(|w^-|^2-{t^-}^2\big)\Big]w^+ = 0, \\ -\Delta w^- +\Big[A_-\big(|w^-|^2-{t^-}^2\big)+B\big(|w^+|^2-{t^+}^2\big)\Big]w^- = 0, \end{cases} \end{align*} $
with following constraints for the constant coefficients
$ A_+, A_->0,\ B^2<A_+A_-,\ t^+, t^->0, $
the radially symmetric solution
$ w(x) = (w^+, w^-): {\mathbb R}^2 \rightarrow\mathbb{C}^2 $
of degree pair
$ (1, 1) $
was given by A. Alama and Q. Gao in J. Differential Equations 255 (2013), 3564-3591. We will concern its linearized operator
$ {\mathcal L} $
around
$ w $
and prove the non-degeneracy result under one more assumption
$ B<0 $
: the kernel of
$ {\mathcal L} $
is spanned by the functions
$ \frac{\partial w}{\partial{x_1}} $
and
$ \frac{\partial w}{\partial{x_2}} $
in a natural Hilbert space. As an application of the non-degeneracy result, a solvability theory for the linearized operator
$ {\mathcal L} $
will be given.
Citation: Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021056
References:
[1]

S. AlamaL. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, J. Funct. Anal., 256 (2009), 1118-1136.  doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[2]

S. AlamaL. Bronsard and P. Mironescu, On compound vortices in a two-component Ginzburg-Landau functional, Indiana Univ. Math. J., 61 (2012), 1861-1909.  doi: 10.1512/iumj.2012.61.4737.  Google Scholar

[3]

S. Alama and Q. Gao, Symmetric vortices for two-component Ginzburg-Landau systems, J. Differential Equations, 255 (2013), 3564-3591.  doi: 10.1016/j.jde.2013.07.042.  Google Scholar

[4]

S. Alama and Q. Gao, Stability of symmetric vortices for two-component Ginzburg-Landau systems, J. Funct. Anal., 267 (2014), 1751-1777.  doi: 10.1016/j.jfa.2014.06.013.  Google Scholar

[5]

Y. AlmogL. BerlyandD. Golovaty and I. Shafrir, Global minimizers for a $p$-Ginzburg-Landau-type energy in $\mathbb{R}^2$, J. Funct. Anal., 256 (2009), 2268-2290.  doi: 10.1016/j.jfa.2008.09.020.  Google Scholar

[6]

Y. AlmogL. BerlyandD. Golovaty and I. Shafrir, Radially symmetric minimizers for a p-Ginzburg Landau type energy in ${\mathbb R^2}$, Calc. Var. Partial Differential Equations, 42 (2011), 517-546.  doi: 10.1007/s00526-011-0396-9.  Google Scholar

[7]

X. ChenC. M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg Landau equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1075-1088.  doi: 10.1017/S0308210500030122.  Google Scholar

[8]

M. Comte and P. Mironescu, A bifurcation analysis for the Ginzburg-Landau equation, Arch. Rational Mech. Anal., 144 (1998), 301-311.  doi: 10.1007/s002050050119.  Google Scholar

[9]

J. Dávila, M. del Pino, M. Medina and R. Rodiac, Interacting helical vortex filaments in the 3-dimensional Ginzburg-Landau equation, preprint, arXiv: 1901.02807. Google Scholar

[10]

M. del PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., 2004 (2004), 1511-1527.  doi: 10.1155/S1073792804133588.  Google Scholar

[11]

M. del PinoM. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541.  doi: 10.1016/j.jfa.2006.07.006.  Google Scholar

[12]

S. Gustafson, Symmetric solutions of the Ginzburg Landau equation in all dimensions, Int. Math. Res. Not., 1997 (1997), 807-816.  doi: 10.1155/S1073792897000524.  Google Scholar

[13]

R. JiangY. Wang and J. Yang, Vortex structures for some geometric flows from pseudo-Euclidean spaces, Discrete Contin. Dyn. Syst., 39 (2019), 1745-1777.  doi: 10.3934/dcds.2019076.  Google Scholar

[14]

K. KasamatsuM. Tsubota and M. Ueda, Structure of vortex lattices in rotating two-component Bose-Einstein condensates, Physica B, 329-333 (2004), 23-24.  doi: 10.1016/S0921-4526(02)01877-X.  Google Scholar

[15]

A. Knigavko and B. Rosenstein, Spontaneous vortex state and ferromagnetic behavior of type-II $p$-wave superconductors, Physical Review B, 58 (1998), 9354-9364.  doi: 10.1103/PhysRevB.58.9354.  Google Scholar

[16]

E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc, Math. Res. Lett., 1 (1994), 701-715.  doi: 10.4310/MRL.1994.v1.n6.a7.  Google Scholar

[17]

F. Lin and J. Wei, Traveling wave solutions of the Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621.  doi: 10.1002/cpa.20338.  Google Scholar

[18]

T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Comm. Partial Differential Equations, 22 (1997), 619-632.  doi: 10.1080/03605309708821276.  Google Scholar

[19]

T.-C. LinJ. Wei and J. Yang, Vortex rings for the Gross-Pitaevskii equation in ${\mathbb R}^3$, J. Math. Pures Appl., 100 (2013), 69-112.  doi: 10.1016/j.matpur.2012.10.012.  Google Scholar

[20]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344.  doi: 10.1006/jfan.1995.1073.  Google Scholar

[21]

F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. (English summary) The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhüser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar

[22]

M. Sauvageot, Properties of the solutions of the Ginzburg-Landau equation on the bifurcation branch, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 375-397.  doi: 10.1007/s00030-003-0039-8.  Google Scholar

[23]

J. Wei and J. Yang, Vortex rings pinning for the Gross-Pitaevskii equation in three dimensional space, SIAM J. Math. Anal., 44 (2012), 3991-4047.  doi: 10.1137/110860379.  Google Scholar

[24]

J. Wei and J. Yang, Traveling vortex helices for Schrödinger map equations, Trans. Amer. Math. Soc., 368 (2016), 2589-2622.  doi: 10.1090/tran/6379.  Google Scholar

[25]

J. Yang, Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity, Discrete Contin. Dyn. Syst., 34 (2014), 2359-2388.  doi: 10.3934/dcds.2014.34.2359.  Google Scholar

show all references

References:
[1]

S. AlamaL. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, J. Funct. Anal., 256 (2009), 1118-1136.  doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[2]

S. AlamaL. Bronsard and P. Mironescu, On compound vortices in a two-component Ginzburg-Landau functional, Indiana Univ. Math. J., 61 (2012), 1861-1909.  doi: 10.1512/iumj.2012.61.4737.  Google Scholar

[3]

S. Alama and Q. Gao, Symmetric vortices for two-component Ginzburg-Landau systems, J. Differential Equations, 255 (2013), 3564-3591.  doi: 10.1016/j.jde.2013.07.042.  Google Scholar

[4]

S. Alama and Q. Gao, Stability of symmetric vortices for two-component Ginzburg-Landau systems, J. Funct. Anal., 267 (2014), 1751-1777.  doi: 10.1016/j.jfa.2014.06.013.  Google Scholar

[5]

Y. AlmogL. BerlyandD. Golovaty and I. Shafrir, Global minimizers for a $p$-Ginzburg-Landau-type energy in $\mathbb{R}^2$, J. Funct. Anal., 256 (2009), 2268-2290.  doi: 10.1016/j.jfa.2008.09.020.  Google Scholar

[6]

Y. AlmogL. BerlyandD. Golovaty and I. Shafrir, Radially symmetric minimizers for a p-Ginzburg Landau type energy in ${\mathbb R^2}$, Calc. Var. Partial Differential Equations, 42 (2011), 517-546.  doi: 10.1007/s00526-011-0396-9.  Google Scholar

[7]

X. ChenC. M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg Landau equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1075-1088.  doi: 10.1017/S0308210500030122.  Google Scholar

[8]

M. Comte and P. Mironescu, A bifurcation analysis for the Ginzburg-Landau equation, Arch. Rational Mech. Anal., 144 (1998), 301-311.  doi: 10.1007/s002050050119.  Google Scholar

[9]

J. Dávila, M. del Pino, M. Medina and R. Rodiac, Interacting helical vortex filaments in the 3-dimensional Ginzburg-Landau equation, preprint, arXiv: 1901.02807. Google Scholar

[10]

M. del PinoP. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one Ginzburg Landau vortex as a Hardy's type inequality, Int. Math. Res. Not., 2004 (2004), 1511-1527.  doi: 10.1155/S1073792804133588.  Google Scholar

[11]

M. del PinoM. Kowalczyk and M. Musso, Variational reduction for Ginzburg-Landau vortices, J. Funct. Anal., 239 (2006), 497-541.  doi: 10.1016/j.jfa.2006.07.006.  Google Scholar

[12]

S. Gustafson, Symmetric solutions of the Ginzburg Landau equation in all dimensions, Int. Math. Res. Not., 1997 (1997), 807-816.  doi: 10.1155/S1073792897000524.  Google Scholar

[13]

R. JiangY. Wang and J. Yang, Vortex structures for some geometric flows from pseudo-Euclidean spaces, Discrete Contin. Dyn. Syst., 39 (2019), 1745-1777.  doi: 10.3934/dcds.2019076.  Google Scholar

[14]

K. KasamatsuM. Tsubota and M. Ueda, Structure of vortex lattices in rotating two-component Bose-Einstein condensates, Physica B, 329-333 (2004), 23-24.  doi: 10.1016/S0921-4526(02)01877-X.  Google Scholar

[15]

A. Knigavko and B. Rosenstein, Spontaneous vortex state and ferromagnetic behavior of type-II $p$-wave superconductors, Physical Review B, 58 (1998), 9354-9364.  doi: 10.1103/PhysRevB.58.9354.  Google Scholar

[16]

E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc, Math. Res. Lett., 1 (1994), 701-715.  doi: 10.4310/MRL.1994.v1.n6.a7.  Google Scholar

[17]

F. Lin and J. Wei, Traveling wave solutions of the Schrödinger map equation, Comm. Pure Appl. Math., 63 (2010), 1585-1621.  doi: 10.1002/cpa.20338.  Google Scholar

[18]

T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Comm. Partial Differential Equations, 22 (1997), 619-632.  doi: 10.1080/03605309708821276.  Google Scholar

[19]

T.-C. LinJ. Wei and J. Yang, Vortex rings for the Gross-Pitaevskii equation in ${\mathbb R}^3$, J. Math. Pures Appl., 100 (2013), 69-112.  doi: 10.1016/j.matpur.2012.10.012.  Google Scholar

[20]

P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), 334-344.  doi: 10.1006/jfan.1995.1073.  Google Scholar

[21]

F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. (English summary) The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhüser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1386-4.  Google Scholar

[22]

M. Sauvageot, Properties of the solutions of the Ginzburg-Landau equation on the bifurcation branch, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 375-397.  doi: 10.1007/s00030-003-0039-8.  Google Scholar

[23]

J. Wei and J. Yang, Vortex rings pinning for the Gross-Pitaevskii equation in three dimensional space, SIAM J. Math. Anal., 44 (2012), 3991-4047.  doi: 10.1137/110860379.  Google Scholar

[24]

J. Wei and J. Yang, Traveling vortex helices for Schrödinger map equations, Trans. Amer. Math. Soc., 368 (2016), 2589-2622.  doi: 10.1090/tran/6379.  Google Scholar

[25]

J. Yang, Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity, Discrete Contin. Dyn. Syst., 34 (2014), 2359-2388.  doi: 10.3934/dcds.2014.34.2359.  Google Scholar

[1]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[2]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[3]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[4]

Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128

[5]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[6]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[7]

Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267

[8]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[9]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[10]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[11]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[12]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[13]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[14]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[15]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[16]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[17]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[18]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[19]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[20]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

2019 Impact Factor: 1.338

Article outline

[Back to Top]