-
Previous Article
Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight
- DCDS Home
- This Issue
-
Next Article
On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system
On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points
1. | College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China |
2. | Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China |
3. | School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China |
If $ (M,g) $ is a smooth compact rank $ 1 $ Riemannian manifold without focal points, it is shown that the measure $ \mu_{\max} $ of maximal entropy for the geodesic flow is unique. In this article, we study the statistic properties and prove that this unique measure $ \mu_{\max} $ is mixing. Stronger conclusion that the geodesic flow on the unit tangent bundle $ SM $ with respect to $ \mu_{\max} $ is Bernoulli is acquired provided $ M $ is a compact surface with genus greater than one and no focal points.
References:
[1] |
M. Babillot,
On the mixing property for hyperbolic systems, Israel J. Math., 129 (2002), 61-76.
doi: 10.1007/BF02773153. |
[2] |
W. Ballmann,
Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.
doi: 10.1007/BF01456836. |
[3] |
W. Ballmann, M. Brin and P. Eberlein,
Structure of manifolds of nonpositive curvature. I, Ann. of Math., 122 (1985), 171-203.
doi: 10.2307/1971373. |
[4] |
K. Burns and A. Katok,
Manifolds with non-positive curvature, Ergodic Theory Dynam. Systems, 5 (1985), 307-317.
doi: 10.1017/S0143385700002935. |
[5] |
E. I. Dinaburg,
On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.
doi: 10.1070/IM1971v005n02ABEH001050. |
[6] |
P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
![]() ![]() |
[7] |
R. Gulliver,
On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), 185-201.
doi: 10.1090/S0002-9947-1975-0383294-0. |
[8] |
G. Knieper,
The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math., 148 (1998), 291-314.
doi: 10.2307/120995. |
[9] |
G. Knieper, Hyperbolic dynamics and Riemannian geometry, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002,453–545.
doi: 10.1016/S1874-575X(02)80008-X. |
[10] |
F. Ledrappier, Y. Lima and O. Sarig,
Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helvetici, 91 (2016), 65-106.
doi: 10.4171/CMH/378. |
[11] |
F. Liu and F. Wang,
Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), 32 (2016), 507-520.
doi: 10.1007/s10114-016-5200-5. |
[12] |
F. Liu, F. Wang and W. Wu,
On the Patterson-Sullivan measure for geodesic flows on rank $1$ manifolds without focal points, Discrete Contin. Dyn. Syst., 40 (2020), 1517-1554.
doi: 10.3934/dcds.2020085. |
[13] |
F. Liu, F. Wang and W. Wu,
The topological entropy for autonomous Lagrangian systems on compact manifolds whose fundamental groups have exponential growth, Sci. China Math., 63 (2020), 1323-1338.
doi: 10.1007/s11425-018-9408-8. |
[14] |
F. Liu and X. Zhu,
The transitivity of geodesic flows on rank $1$ manifolds without focal points, Differential Geom. Appl., 60 (2018), 49-53.
doi: 10.1016/j.difgeo.2018.05.007. |
[15] |
J. J. O'Sullivan,
Riemannian manifolds without focal points, J. Differential Geometry, 11 (1976), 321-333.
doi: 10.4310/jdg/1214433590. |
[16] |
G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1600-1. |
[17] |
R. O. Ruggiero,
Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225.
doi: 10.1017/S0143385797060963. |
[18] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[19] |
J. Watkins,
The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedicata, 164 (2013), 319-349.
doi: 10.1007/s10711-012-9776-3. |
[20] |
W. Wu, F. Liu and F. Wang, On the ergodicity of geodesic flows on surfaces without focal points, preprint, arXiv:1812.04409. |
show all references
References:
[1] |
M. Babillot,
On the mixing property for hyperbolic systems, Israel J. Math., 129 (2002), 61-76.
doi: 10.1007/BF02773153. |
[2] |
W. Ballmann,
Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.
doi: 10.1007/BF01456836. |
[3] |
W. Ballmann, M. Brin and P. Eberlein,
Structure of manifolds of nonpositive curvature. I, Ann. of Math., 122 (1985), 171-203.
doi: 10.2307/1971373. |
[4] |
K. Burns and A. Katok,
Manifolds with non-positive curvature, Ergodic Theory Dynam. Systems, 5 (1985), 307-317.
doi: 10.1017/S0143385700002935. |
[5] |
E. I. Dinaburg,
On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.
doi: 10.1070/IM1971v005n02ABEH001050. |
[6] |
P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
![]() ![]() |
[7] |
R. Gulliver,
On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), 185-201.
doi: 10.1090/S0002-9947-1975-0383294-0. |
[8] |
G. Knieper,
The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math., 148 (1998), 291-314.
doi: 10.2307/120995. |
[9] |
G. Knieper, Hyperbolic dynamics and Riemannian geometry, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002,453–545.
doi: 10.1016/S1874-575X(02)80008-X. |
[10] |
F. Ledrappier, Y. Lima and O. Sarig,
Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helvetici, 91 (2016), 65-106.
doi: 10.4171/CMH/378. |
[11] |
F. Liu and F. Wang,
Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), 32 (2016), 507-520.
doi: 10.1007/s10114-016-5200-5. |
[12] |
F. Liu, F. Wang and W. Wu,
On the Patterson-Sullivan measure for geodesic flows on rank $1$ manifolds without focal points, Discrete Contin. Dyn. Syst., 40 (2020), 1517-1554.
doi: 10.3934/dcds.2020085. |
[13] |
F. Liu, F. Wang and W. Wu,
The topological entropy for autonomous Lagrangian systems on compact manifolds whose fundamental groups have exponential growth, Sci. China Math., 63 (2020), 1323-1338.
doi: 10.1007/s11425-018-9408-8. |
[14] |
F. Liu and X. Zhu,
The transitivity of geodesic flows on rank $1$ manifolds without focal points, Differential Geom. Appl., 60 (2018), 49-53.
doi: 10.1016/j.difgeo.2018.05.007. |
[15] |
J. J. O'Sullivan,
Riemannian manifolds without focal points, J. Differential Geometry, 11 (1976), 321-333.
doi: 10.4310/jdg/1214433590. |
[16] |
G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1600-1. |
[17] |
R. O. Ruggiero,
Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225.
doi: 10.1017/S0143385797060963. |
[18] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[19] |
J. Watkins,
The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedicata, 164 (2013), 319-349.
doi: 10.1007/s10711-012-9776-3. |
[20] |
W. Wu, F. Liu and F. Wang, On the ergodicity of geodesic flows on surfaces without focal points, preprint, arXiv:1812.04409. |
[1] |
Fei Liu, Fang Wang, Weisheng Wu. On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1517-1554. doi: 10.3934/dcds.2020085 |
[2] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[3] |
Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 |
[4] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[5] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[6] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[7] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[8] |
Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609 |
[9] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[10] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[11] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[12] |
Jian Li. Localization of mixing property via Furstenberg families. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725 |
[13] |
Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915 |
[14] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[15] |
Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525 |
[16] |
Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005 |
[17] |
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 |
[18] |
Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875 |
[19] |
Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13 |
[20] |
Jinjun Li, Min Wu. Divergence points in systems satisfying the specification property. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 905-920. doi: 10.3934/dcds.2013.33.905 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]