October  2021, 41(10): 4791-4804. doi: 10.3934/dcds.2021057

On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points

1. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China

2. 

Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China

3. 

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China

* Corresponding author: Fang Wang

Received  September 2020 Published  October 2021 Early access  March 2021

Fund Project: F. Liu is partially supported by Natural Science Foundation of Shandong Province under Grant No. ZR2020MA017, and NSFC under Grant Nos. 11301305, 11571207. F. Wang is partially supported by NSFC under Grant No. 11871045 and the State Scholarship Fund from China Scholarship Council (CSC). The research is also partially supported by key research project of the Academy for Multidisciplinary Studies, Capital Normal University

If $ (M,g) $ is a smooth compact rank $ 1 $ Riemannian manifold without focal points, it is shown that the measure $ \mu_{\max} $ of maximal entropy for the geodesic flow is unique. In this article, we study the statistic properties and prove that this unique measure $ \mu_{\max} $ is mixing. Stronger conclusion that the geodesic flow on the unit tangent bundle $ SM $ with respect to $ \mu_{\max} $ is Bernoulli is acquired provided $ M $ is a compact surface with genus greater than one and no focal points.

Citation: Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4791-4804. doi: 10.3934/dcds.2021057
References:
[1]

M. Babillot, On the mixing property for hyperbolic systems, Israel J. Math., 129 (2002), 61-76.  doi: 10.1007/BF02773153.  Google Scholar

[2]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.  doi: 10.1007/BF01456836.  Google Scholar

[3]

W. BallmannM. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math., 122 (1985), 171-203.  doi: 10.2307/1971373.  Google Scholar

[4]

K. Burns and A. Katok, Manifolds with non-positive curvature, Ergodic Theory Dynam. Systems, 5 (1985), 307-317.  doi: 10.1017/S0143385700002935.  Google Scholar

[5]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.  doi: 10.1070/IM1971v005n02ABEH001050.  Google Scholar

[6] P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.   Google Scholar
[7]

R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), 185-201.  doi: 10.1090/S0002-9947-1975-0383294-0.  Google Scholar

[8]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math., 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002,453–545. doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

F. LedrappierY. Lima and O. Sarig, Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helvetici, 91 (2016), 65-106.  doi: 10.4171/CMH/378.  Google Scholar

[11]

F. Liu and F. Wang, Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), 32 (2016), 507-520.  doi: 10.1007/s10114-016-5200-5.  Google Scholar

[12]

F. LiuF. Wang and W. Wu, On the Patterson-Sullivan measure for geodesic flows on rank $1$ manifolds without focal points, Discrete Contin. Dyn. Syst., 40 (2020), 1517-1554.  doi: 10.3934/dcds.2020085.  Google Scholar

[13]

F. LiuF. Wang and W. Wu, The topological entropy for autonomous Lagrangian systems on compact manifolds whose fundamental groups have exponential growth, Sci. China Math., 63 (2020), 1323-1338.  doi: 10.1007/s11425-018-9408-8.  Google Scholar

[14]

F. Liu and X. Zhu, The transitivity of geodesic flows on rank $1$ manifolds without focal points, Differential Geom. Appl., 60 (2018), 49-53.  doi: 10.1016/j.difgeo.2018.05.007.  Google Scholar

[15]

J. J. O'Sullivan, Riemannian manifolds without focal points, J. Differential Geometry, 11 (1976), 321-333.  doi: 10.4310/jdg/1214433590.  Google Scholar

[16]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[17]

R. O. Ruggiero, Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225.  doi: 10.1017/S0143385797060963.  Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[19]

J. Watkins, The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedicata, 164 (2013), 319-349.  doi: 10.1007/s10711-012-9776-3.  Google Scholar

[20]

W. Wu, F. Liu and F. Wang, On the ergodicity of geodesic flows on surfaces without focal points, preprint, arXiv:1812.04409. Google Scholar

show all references

References:
[1]

M. Babillot, On the mixing property for hyperbolic systems, Israel J. Math., 129 (2002), 61-76.  doi: 10.1007/BF02773153.  Google Scholar

[2]

W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.  doi: 10.1007/BF01456836.  Google Scholar

[3]

W. BallmannM. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math., 122 (1985), 171-203.  doi: 10.2307/1971373.  Google Scholar

[4]

K. Burns and A. Katok, Manifolds with non-positive curvature, Ergodic Theory Dynam. Systems, 5 (1985), 307-317.  doi: 10.1017/S0143385700002935.  Google Scholar

[5]

E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.  doi: 10.1070/IM1971v005n02ABEH001050.  Google Scholar

[6] P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.   Google Scholar
[7]

R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), 185-201.  doi: 10.1090/S0002-9947-1975-0383294-0.  Google Scholar

[8]

G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math., 148 (1998), 291-314.  doi: 10.2307/120995.  Google Scholar

[9]

G. Knieper, Hyperbolic dynamics and Riemannian geometry, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002,453–545. doi: 10.1016/S1874-575X(02)80008-X.  Google Scholar

[10]

F. LedrappierY. Lima and O. Sarig, Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helvetici, 91 (2016), 65-106.  doi: 10.4171/CMH/378.  Google Scholar

[11]

F. Liu and F. Wang, Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), 32 (2016), 507-520.  doi: 10.1007/s10114-016-5200-5.  Google Scholar

[12]

F. LiuF. Wang and W. Wu, On the Patterson-Sullivan measure for geodesic flows on rank $1$ manifolds without focal points, Discrete Contin. Dyn. Syst., 40 (2020), 1517-1554.  doi: 10.3934/dcds.2020085.  Google Scholar

[13]

F. LiuF. Wang and W. Wu, The topological entropy for autonomous Lagrangian systems on compact manifolds whose fundamental groups have exponential growth, Sci. China Math., 63 (2020), 1323-1338.  doi: 10.1007/s11425-018-9408-8.  Google Scholar

[14]

F. Liu and X. Zhu, The transitivity of geodesic flows on rank $1$ manifolds without focal points, Differential Geom. Appl., 60 (2018), 49-53.  doi: 10.1016/j.difgeo.2018.05.007.  Google Scholar

[15]

J. J. O'Sullivan, Riemannian manifolds without focal points, J. Differential Geometry, 11 (1976), 321-333.  doi: 10.4310/jdg/1214433590.  Google Scholar

[16]

G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[17]

R. O. Ruggiero, Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225.  doi: 10.1017/S0143385797060963.  Google Scholar

[18]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[19]

J. Watkins, The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedicata, 164 (2013), 319-349.  doi: 10.1007/s10711-012-9776-3.  Google Scholar

[20]

W. Wu, F. Liu and F. Wang, On the ergodicity of geodesic flows on surfaces without focal points, preprint, arXiv:1812.04409. Google Scholar

[1]

Fei Liu, Fang Wang, Weisheng Wu. On the Patterson-Sullivan measure for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1517-1554. doi: 10.3934/dcds.2020085

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[4]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[5]

Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147

[6]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[7]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[8]

Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609

[9]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[10]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[11]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[12]

Jian Li. Localization of mixing property via Furstenberg families. Discrete & Continuous Dynamical Systems, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725

[13]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

[14]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[15]

Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525

[16]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[17]

Daniel Visscher. A new proof of Franks' lemma for geodesic flows. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4875-4895. doi: 10.3934/dcds.2014.34.4875

[18]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

[19]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[20]

Jinjun Li, Min Wu. Divergence points in systems satisfying the specification property. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 905-920. doi: 10.3934/dcds.2013.33.905

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (90)
  • HTML views (203)
  • Cited by (0)

Other articles
by authors

[Back to Top]