• Previous Article
    Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity
  • DCDS Home
  • This Issue
  • Next Article
    Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight
October  2021, 41(10): 4823-4846. doi: 10.3934/dcds.2021059

An approximation of forward self-similar solutions to the 3D Navier-Stokes system

1. 

Mathematical Institute, OxPDE, University of Oxford, Oxford, UK

2. 

St Petersburg Department of Steklov Mathematical Institute, RAS, RUSSIA

* Corresponding author

Received  October 2020 Published  October 2021 Early access  March 2021

In this paper, we present two constructions of forward self-similar solutions to the $ 3 $D incompressible Navier-Stokes system, as the singular limit of forward self-similar solutions to certain parabolic systems.

Citation: Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4823-4846. doi: 10.3934/dcds.2021059
References:
[1]

T. Barker, G. Seregin and V. Šverák, On stability of weak Navier-Stokes solutions with large $L^{3, \infty}$ initial data, Commun. Partial Differ. Equ, 43, (2018), 628–651. doi: 10.1080/03605302.2018.1449219.  Google Scholar

[2]

Z. Bradshaw and T-P. Tsai, Forward Discretely Self-Similar Solutions of the Navier-Stokes Equations Ⅱ, Ann. Henri Poincaré, 18 (2017), 1095–1119. doi: 10.1007/s00023-016-0519-0.  Google Scholar

[3]

D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L^2_loc(\mathbb{R}^3)$, arXiv: 1610.01386. Google Scholar

[4]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measure as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ, 14, (1989), 577–618. doi: 10.1080/03605308908820621.  Google Scholar

[5]

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249. Springer-Verlag New York, 2008.  Google Scholar

[6]

J. Guillod and V. Šverák, Numerical investigations of non-uniqueness for the Naier-Stokes intial value problem in borderline spaces, Preprint (2017), arXiv:1704.00560. Google Scholar

[7]

F. Hounkpe, Decay estimate for some toy-models related to the Navier-Stokes system, Preprint (2020), arXiv:2008.08712. Google Scholar

[8]

H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent math, 196 (2014), 233–265. doi: 10.1007/s00222-013-0468-x.  Google Scholar

[9]

N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2,220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007,141–164. doi: 10.1090/trans2/220/07.  Google Scholar

[10]

M. Korobkov and T-P. Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space, Analysis & PDE, 9 (2016), 1811–1827. doi: 10.2140/apde.2016.9.1811.  Google Scholar

[11]

O. A. Ladyzhenskaya and G. A. Seregin, A method for the approximate solution of initial-boundary value problems for Navier-Stokes equations, J. Math Sci, 75 (1995), 2038-2057.  doi: 10.1007/BF02362945.  Google Scholar

[12]

P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL 2002. doi: 10.1201/9781420035674.  Google Scholar

[13]

P. G. Lemarie-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL (2016). xxii+718 pp. doi: 10.1201/b19556.  Google Scholar

[14]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[15]

J. Mawhin, Leray-Schauder degree: a half-century of extensions and applications, Topol. Methods Nonlinear Anal., 14 (1999), 195–228. doi: 10.12775/TMNA.1999.029.  Google Scholar

[16]

D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Generalised Gagliardo-Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO, Milan J. Math., 81 (2013), 265–289. doi: 10.1007/s00032-013-0202-6.  Google Scholar

show all references

References:
[1]

T. Barker, G. Seregin and V. Šverák, On stability of weak Navier-Stokes solutions with large $L^{3, \infty}$ initial data, Commun. Partial Differ. Equ, 43, (2018), 628–651. doi: 10.1080/03605302.2018.1449219.  Google Scholar

[2]

Z. Bradshaw and T-P. Tsai, Forward Discretely Self-Similar Solutions of the Navier-Stokes Equations Ⅱ, Ann. Henri Poincaré, 18 (2017), 1095–1119. doi: 10.1007/s00023-016-0519-0.  Google Scholar

[3]

D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L^2_loc(\mathbb{R}^3)$, arXiv: 1610.01386. Google Scholar

[4]

Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measure as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ, 14, (1989), 577–618. doi: 10.1080/03605308908820621.  Google Scholar

[5]

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249. Springer-Verlag New York, 2008.  Google Scholar

[6]

J. Guillod and V. Šverák, Numerical investigations of non-uniqueness for the Naier-Stokes intial value problem in borderline spaces, Preprint (2017), arXiv:1704.00560. Google Scholar

[7]

F. Hounkpe, Decay estimate for some toy-models related to the Navier-Stokes system, Preprint (2020), arXiv:2008.08712. Google Scholar

[8]

H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent math, 196 (2014), 233–265. doi: 10.1007/s00222-013-0468-x.  Google Scholar

[9]

N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2,220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007,141–164. doi: 10.1090/trans2/220/07.  Google Scholar

[10]

M. Korobkov and T-P. Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space, Analysis & PDE, 9 (2016), 1811–1827. doi: 10.2140/apde.2016.9.1811.  Google Scholar

[11]

O. A. Ladyzhenskaya and G. A. Seregin, A method for the approximate solution of initial-boundary value problems for Navier-Stokes equations, J. Math Sci, 75 (1995), 2038-2057.  doi: 10.1007/BF02362945.  Google Scholar

[12]

P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL 2002. doi: 10.1201/9781420035674.  Google Scholar

[13]

P. G. Lemarie-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL (2016). xxii+718 pp. doi: 10.1201/b19556.  Google Scholar

[14]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[15]

J. Mawhin, Leray-Schauder degree: a half-century of extensions and applications, Topol. Methods Nonlinear Anal., 14 (1999), 195–228. doi: 10.12775/TMNA.1999.029.  Google Scholar

[16]

D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Generalised Gagliardo-Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO, Milan J. Math., 81 (2013), 265–289. doi: 10.1007/s00032-013-0202-6.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[3]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[4]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[5]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[6]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[7]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[8]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[9]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[10]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[11]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[12]

Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235

[13]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[14]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[15]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[16]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[17]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[18]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[19]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[20]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (100)
  • HTML views (220)
  • Cited by (0)

Other articles
by authors

[Back to Top]