We are concerned with blow-up mechanisms in a semilinear heat equation:
$ u_t = \Delta u + |x|^{2a} u^p , \quad x \in \textbf{R}^N , \, t>0, $
where
$ \lim\limits_{t\to T} \left( T-t \right)^{1/(p-1)} \| u_{\ell, {\rm HV}}(\cdot, t) \|_{L^{\infty}(\textbf{R}^N )} = \infty, $
where
Citation: |
[1] | P. Biernat and Y. Seki, Type II blow-up mechanism in supercritical harmonic map heat flow, Int. Math. Res. Not., 2 (2019), 407-456. doi: 10.1093/imrn/rnx122. |
[2] | P. Biernat and Y. Seki, Transition of blow-up mechanisms in $k$-equivariant harmonic map heat flow, Nonlinearity, 33 (2020), 2756-2796. doi: 10.1088/1361-6544/ab74f4. |
[3] | J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575. doi: 10.1088/0951-7715/7/2/011. |
[4] | C. Collot, Nonradial type II blow up for the energy-supercritical semilinear heat equation, Anal. PDE, 10 (2017), 127-252. doi: 10.2140/apde.2017.10.127. |
[5] | C. Collot, F. Merle and P. Raphaël, Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions, Comm. Math. Phys., 352 (2017), 215-285. doi: 10.1007/s00220-016-2795-4. |
[6] | C. Collot, F. Merle and P. Raphaël, Strongly anisotropic type II blow-up at isolated points, J. Amer. Math. Soc., 33 (2020), 527-607. doi: 10.1090/jams/941. |
[7] | M. del Pino, M. Musso and J. Wei, Type II blow-up in the 5-dimensional energy critical heat equation, Acta. Math. Sinica, 35 (2019), 1027-1042. doi: 10.1007/s10114-019-8341-5. |
[8] | M. del Pino, M. Musso and J. Wei, Geometry driven type II higher dimensional blow-up for the critical heat equation, J. Funct. Anal., 280 (2021), 108788, 49pp. doi: 10.1016/j.jfa.2020.108788. |
[9] | Z. Erbol, Blow-up rate estimates of sign-changing solutions for nonlinear parabolic system, Master thesis (in Japanese), Tohoku University, 2019. |
[10] | S. Filippas, M. A. Herrero and J. J. L. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, R. Soc. Lond. Proc. Ser. A., 456 (2000), 2957-2982. doi: 10.1098/rspa.2000.0648. |
[11] | S. Filippas and A. Tertikas, On similarity solutions of a heat equation with a nonhomogeneous nonlinearity, J. Differential Equations, 165 (2000), 468-492. doi: 10.1006/jdeq.2000.3789. |
[12] | H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. |
[13] | Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40. doi: 10.1512/iumj.1987.36.36001. |
[14] | Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., 53 (2004), 483-514. doi: 10.1512/iumj.2004.53.2401. |
[15] | J.-S. Guo, C.-S. Lin and M. Shimojo, Blow-up behavior for a parabolic equation with spatially dependent coefficient, Dynam. Systems Appl., 19 (2010), 415-433. |
[16] | J.-S. Guo, C.-S. Lin and M. Shimojo, Blow-up for a reaction-diffusion equation with variable coefficient, Appl. Math. Lett., 26 (2013), 150-153. doi: 10.1016/j.aml.2012.07.017. |
[17] | J.-S. Guo and M. Shimojo, Blowing up at zero points of potential for an initial boundary value problem, Commun. Pure Appl. Anal., 10 (2011), 161-177. doi: 10.3934/cpaa.2011.10.161. |
[18] | J.-S. Guo and P. Souplet, Excluding blowup at zero points of the potential by means of Liouville-type theorems, J. Differential Equations, 265 (2018), 4942-4964. doi: 10.1016/j.jde.2018.06.025. |
[19] | J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption, Tohoku Math. J. (2), 60 (2008), 37-70. doi: 10.2748/tmj/1206734406. |
[20] | J. Harada, Non self-similar blow-up solutions to the heat equation with nonlinear boundary conditions, Nonlinear Anal., 102 (2014), 36-83. doi: 10.1016/j.na.2014.01.028. |
[21] | J. Harada, Construction of type II blow-up solutions for a semilinear parabolic system with higher dimension,, Calc. Var., 56 (2017), Paper No. 121, 36 pp. doi: 10.1007/s00526-017-1213-x. |
[22] | J. Harada, A higher speed type II blowup for the five dimensional energy critical heat equation, Ann. Inst. Henri. Poincare, Analyse Non Linéaire., 37 (2020), 309-341. doi: 10.1016/j.anihpc.2019.09.006. |
[23] | M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, unpublished preprint. |
[24] | M. A. Herrero and J. J. L. Velázquez, Explosion de solutions d'équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 141-145. |
[25] | L. A. Lepin, Self-similar solutions of a semilinear heat equation, Mat. Model., 2 (1990), 63-74. |
[26] | Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u + K(x) u^p = 0$ in $\mathbb{R}^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K. |
[27] | H. Matano, Blow-up in nonlinear heat equations with supercritical power nonlinearity,, in Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 446 (2007), 385–412. doi: 10.1090/conm/446/08641. |
[28] | H. Matano and F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541. doi: 10.1002/cpa.20044. |
[29] | H. Matano and F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064. doi: 10.1016/j.jfa.2008.05.021. |
[30] | H. Matano and F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 717-748. doi: 10.1016/j.jfa.2011.02.025. |
[31] | F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u+|u|^{p-1}u$, Duke Math., 86 (1997), 143-195. |
[32] | N. Mizoguchi, Type-II blowup for a semilinear heat equation, Adv. Differential Equations, 9 (2004), 1279-1316. |
[33] | N. Mizoguchi, Rate of type II blowup for a semilinear heat equation, Math. Ann., 339 (2007), 839-877. doi: 10.1007/s00208-007-0133-z. |
[34] | N. Mizoguchi, Blow-up rate of type II and the braid group theory, Trans. Amer. Math. Soc., 363 (2011), 1419-1443. doi: 10.1090/S0002-9947-2010-04784-1. |
[35] | N. Mizoguchi, Nonexistence of type II blow-up solution for a semilinear heat equation, J. Differential Equations, 250 (2011), 26-32. doi: 10.1016/j.jde.2010.10.012. |
[36] | N. Mizoguchi and P. Souplet., Optimal condition for blow-up of the critical $L^q$ norm for the semilinear heat equation, Adv. Math., 355 (2019), 106763, 24pp. doi: 10.1016/j.aim.2019.106763. |
[37] | Y. Naito and T. Senba., Existence of peaking solutions for semilinear heat equations with blow-up profile above the singular steady state, Nonlinear Anal., 181 (2019), 265-293. doi: 10.1016/j.na.2018.12.001. |
[38] | Q. H. Phan, Blow-up rate estimates and Liouville type theorems for a semilinear heat equation with weighted source, J. Dynam. Differential Equations, 29 (2017), 1131-1144. doi: 10.1007/s10884-015-9489-z. |
[39] | R. G. Pinsky, Existence and nonexistence of global solutions for $u_t = \Delta u+a(x)u^p$ in ${\bf{R}}^d$, J. Differential Equations, 133 (1997), 152-177. doi: 10.1006/jdeq.1996.3196. |
[40] | P. Poláčik and P. Quittner, On the multiplicity of self-similar solutions of the semilinear heat equation, Nonlinear Anal., 191 (2020), 111639, 23pp. doi: 10.1016/j.na.2019.111639. |
[41] | P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Second edition, Birkhäuser Advanced Texts, Basel, 2019. doi: 10.1007/978-3-030-18222-9. |
[42] | R. Schweyer, Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., 263 (2012), 3922-3983. doi: 10.1016/j.jfa.2012.09.015. |
[43] | Y. Seki, On exact dead-core rates for a semilinear heat equation with strong absorption, Comm. Contemp. Math., 13 (2011), 1-52. doi: 10.1142/S0219199711004154. |
[44] | Y. Seki, Type II blow-up mechanisms in a semilinear heat equation with critical Joseph–Lundgren exponent, J. Funct. Anal., 275 (2018), 3380-3456. doi: 10.1016/j.jfa.2018.05.008. |
[45] | Y. Seki, Type II blow-up mechanisms in a semilinear heat equation with Lepin exponent, J. Differential Equations, 268 (2020), 853-900. doi: 10.1016/j.jde.2019.08.026. |
[46] | R. Suzuki, Existence and nonexistence of global solutions of quasilinear parabolic equations, J. Math. Soc. Japan, 54 (2002), 747-792. doi: 10.2969/jmsj/1191591992. |
[47] | G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., New York, 1939. |
[48] | X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549–590. doi: 10.1090/S0002-9947-1993-1153016-5. |
[49] | J. J. L. Velázquez, Curvature blow-up in perturbations of minimal cones evolving by mean curvature flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21 (1994), 595-628. |