doi: 10.3934/dcds.2021061

Multiple positive bound state solutions for a critical Choquard equation

1. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB, Brazil

2. 

Departamento de Matemática, Universidade de Brasilia - UNB, 70910-900, Brasília-DF, Brazil

3. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", CEP: 00133, Roma, Italia

* Corresponding author: R. Molle

Received  August 2020 Published  March 2021

In this paper we consider the problem
$ (P_{\lambda})\ \ \ \ \ \ \left\{ \begin{array}{rcl} -\Delta u+V_{\lambda}(x)u = (I_{\mu}*|u|^{2^{*}_{\mu}})|u|^{2^{*}_{\mu}-2}u \ \ \mbox{in} \ \ \mathbb{R}^{N}, \\ u>0 \ \ \mbox{in} \ \ \mathbb{R}^{N}, \end{array} \right. $
where
$ V_{\lambda} = \lambda+V_{0} $
with
$ \lambda \geq 0 $
,
$ V_0\in L^{N/2}({\mathbb{R}}^N) $
,
$ I_{\mu} = \frac{1}{|x|^\mu} $
is the Riesz potential with
$ 0<\mu<\min\{N, 4\} $
and
$ 2^{*}_{\mu} = \frac{2N-\mu}{N-2} $
with
$ N\geq 3 $
. Under some smallness assumption on
$ V_0 $
and
$ \lambda $
we prove the existence of two positive solutions of
$ (P_\lambda) $
. In order to prove the main results, we used variational methods combined with degree theory.
Citation: Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021061
References:
[1]

C. O. AlvesG. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Advanced in Nonlinear Analysis, 5 (2016), 331-345.  doi: 10.1515/anona-2015-0123.  Google Scholar

[2]

C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Eq., 55 (2016), Art. 48, 28 pp. doi: 10.1007/s00526-016-0984-9.  Google Scholar

[3]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[4]

C. O. Alves and M. Yang, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23-58.  doi: 10.1017/S0308210515000311.  Google Scholar

[5]

C. O. Alves and Y. Jianfu, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar

[6]

T. Aubin, Problemès Isopérimétriques et Sobolev spaces, J. Diff. Geom., 11 (1976), 573-598.  doi: 10.4310/jdg/1214433725.  Google Scholar

[7]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, arXiv: 2008.07431, to appear on Comm. in PDE, https://doi.org/10.1080/03605302.2021.1893747. doi: 10.1080/03605302.2021.1893747.  Google Scholar

[8]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with $V(\infty) = 0$, Progr. Nonlinear Differential Equations Appl., 66 (2005), 53-65.  doi: 10.1007/3-7643-7401-2_4.  Google Scholar

[9]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^N, $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[10]

A.K. Ben-NaoumC. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis, 26 (1996), 823-833.  doi: 10.1016/0362-546X(94)00324-B.  Google Scholar

[11]

L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 7 (2000), 210-230.   Google Scholar

[12]

G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 73, 29 pp. doi: 10.1051/cocv/2018071.  Google Scholar

[13]

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Eq., 3 (1995), 493-512.  doi: 10.1007/BF01187898.  Google Scholar

[14]

P. Cherrier, Meilleures constantes dans les inegalites relatives aux espaces de Sobolev, Bull. Sci. Math., 108 (1984), 225-262.   Google Scholar

[15]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[16]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512.   Google Scholar

[17]

L. Du and M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866, arXiv: 1810.11186v1. doi: 10.3934/dcds.2019219.  Google Scholar

[18]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv: 1810.11759v1. Google Scholar

[19]

F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics, 61 (2018), 1219-1242.  doi: 10.1007/s11425-016-9067-5.  Google Scholar

[20]

F. GaoE. da SilvaM. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921-954.  doi: 10.1017/prm.2018.131.  Google Scholar

[21]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. of Funct. Anal., 271 (2016), 107–135. doi: 10.1016/j.jfa.2016.04.019.  Google Scholar

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[23]

P. M. Girão, A sharp inequality for Sobolev functions, C. R. Math. Acad. Sci. Paris, 334 (2002), 105-108.  doi: 10.1016/S1631-073X(02)02215-X.  Google Scholar

[24]

R. HadijiR. MolleD. Passaseo and H. Yazidi, Localization of solutions for nonlinear elliptic problems with critical growth, C. R. Acad. Sci. Paris Sér. I Math., 343 (2006), 725-730.  doi: 10.1016/j.crma.2006.10.018.  Google Scholar

[25]

S. Lancelotti and R. Molle, Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 8, 28 pp. doi: 10.1007/s00030-019-0611-5.  Google Scholar

[26]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[27]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[28]

E. Lieb and M. Loss, Analysis,, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[29]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations., Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[30]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana, Part I, 1 (1985), 145–201, and Part II, 2 (1985), 45–121. doi: 10.4171/RMI/6.  Google Scholar

[31]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3.  Google Scholar

[32]

C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete & Continuous Dynamical Systems - A, 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[33]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbb{R}^N$ with critical growth, Nonlinear Analysis, 29 (1997), 773-781.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[34]

R. Molle and D. Passaseo, Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent, Comm. in PDE., 32 (2007), 797-818.  doi: 10.1080/03605300600781642.  Google Scholar

[35]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[36]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp, arXiv: 1403.7414v1. doi: 10.1142/S0219199715500054.  Google Scholar

[37]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[38]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations., Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.  Google Scholar

[39]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[40]

D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in bounded domains, Ann. Inst. Henri Poincaré, 13 (1996), 185-227.  doi: 10.1016/S0294-1449(16)30102-0.  Google Scholar

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842–3856. doi: 10.1016/j.na.2010.01.021.  Google Scholar

[42]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonliarities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[44]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Advanced in Nonlinear Analysis, 5 (2016), 331-345.  doi: 10.1515/anona-2015-0123.  Google Scholar

[2]

C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Eq., 55 (2016), Art. 48, 28 pp. doi: 10.1007/s00526-016-0984-9.  Google Scholar

[3]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.  Google Scholar

[4]

C. O. Alves and M. Yang, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23-58.  doi: 10.1017/S0308210515000311.  Google Scholar

[5]

C. O. Alves and Y. Jianfu, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.  Google Scholar

[6]

T. Aubin, Problemès Isopérimétriques et Sobolev spaces, J. Diff. Geom., 11 (1976), 573-598.  doi: 10.4310/jdg/1214433725.  Google Scholar

[7]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, arXiv: 2008.07431, to appear on Comm. in PDE, https://doi.org/10.1080/03605302.2021.1893747. doi: 10.1080/03605302.2021.1893747.  Google Scholar

[8]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with $V(\infty) = 0$, Progr. Nonlinear Differential Equations Appl., 66 (2005), 53-65.  doi: 10.1007/3-7643-7401-2_4.  Google Scholar

[9]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^N, $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[10]

A.K. Ben-NaoumC. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis, 26 (1996), 823-833.  doi: 10.1016/0362-546X(94)00324-B.  Google Scholar

[11]

L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 7 (2000), 210-230.   Google Scholar

[12]

G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 73, 29 pp. doi: 10.1051/cocv/2018071.  Google Scholar

[13]

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Eq., 3 (1995), 493-512.  doi: 10.1007/BF01187898.  Google Scholar

[14]

P. Cherrier, Meilleures constantes dans les inegalites relatives aux espaces de Sobolev, Bull. Sci. Math., 108 (1984), 225-262.   Google Scholar

[15]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.  Google Scholar

[16]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512.   Google Scholar

[17]

L. Du and M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866, arXiv: 1810.11186v1. doi: 10.3934/dcds.2019219.  Google Scholar

[18]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv: 1810.11759v1. Google Scholar

[19]

F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics, 61 (2018), 1219-1242.  doi: 10.1007/s11425-016-9067-5.  Google Scholar

[20]

F. GaoE. da SilvaM. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921-954.  doi: 10.1017/prm.2018.131.  Google Scholar

[21]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. of Funct. Anal., 271 (2016), 107–135. doi: 10.1016/j.jfa.2016.04.019.  Google Scholar

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[23]

P. M. Girão, A sharp inequality for Sobolev functions, C. R. Math. Acad. Sci. Paris, 334 (2002), 105-108.  doi: 10.1016/S1631-073X(02)02215-X.  Google Scholar

[24]

R. HadijiR. MolleD. Passaseo and H. Yazidi, Localization of solutions for nonlinear elliptic problems with critical growth, C. R. Acad. Sci. Paris Sér. I Math., 343 (2006), 725-730.  doi: 10.1016/j.crma.2006.10.018.  Google Scholar

[25]

S. Lancelotti and R. Molle, Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 8, 28 pp. doi: 10.1007/s00030-019-0611-5.  Google Scholar

[26]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.  Google Scholar

[27]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[28]

E. Lieb and M. Loss, Analysis,, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[29]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations., Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.  Google Scholar

[30]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana, Part I, 1 (1985), 145–201, and Part II, 2 (1985), 45–121. doi: 10.4171/RMI/6.  Google Scholar

[31]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3.  Google Scholar

[32]

C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete & Continuous Dynamical Systems - A, 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.  Google Scholar

[33]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbb{R}^N$ with critical growth, Nonlinear Analysis, 29 (1997), 773-781.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[34]

R. Molle and D. Passaseo, Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent, Comm. in PDE., 32 (2007), 797-818.  doi: 10.1080/03605300600781642.  Google Scholar

[35]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[36]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp, arXiv: 1403.7414v1. doi: 10.1142/S0219199715500054.  Google Scholar

[37]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[38]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations., Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.  Google Scholar

[39]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.  Google Scholar

[40]

D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in bounded domains, Ann. Inst. Henri Poincaré, 13 (1996), 185-227.  doi: 10.1016/S0294-1449(16)30102-0.  Google Scholar

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842–3856. doi: 10.1016/j.na.2010.01.021.  Google Scholar

[42]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonliarities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.  Google Scholar

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[44]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[1]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[2]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[5]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[6]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[9]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[10]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[11]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[13]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[14]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[15]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[16]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[17]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[18]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[19]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[20]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

2019 Impact Factor: 1.338

Article outline

[Back to Top]