• Previous Article
    Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition
  • DCDS Home
  • This Issue
  • Next Article
    Convergence of nonlocal geometric flows to anisotropic mean curvature motion
doi: 10.3934/dcds.2021063

Symmetries of vector fields: The diffeomorphism centralizer

Department of Mathematics, The University of Chicago, Chicago, IL, 60637, USA

Received  September 2020 Revised  February 2021 Published  March 2021

Fund Project: D.O. was supported by the ERC project 692925 NUHGD

In this paper we study the diffeomorphism centralizer of a vector field: given a vector field it is the set of diffeomorphisms that commutes with the flow. Our main theorem states that for a $ C^1 $-generic diffeomorphism having at most finitely many sinks or sources, the diffeomorphism centralizer is quasi-trivial. In certain cases, we can promote the quasi-triviality to triviality. We also obtain a criterion for a diffeomorphism in the centralizer to be a reparametrization of the flow.

Citation: Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021063
References:
[1]

F. AbdenurC. Bonatti and S. Crovisier, Global dominated splittings and the $C^1$-Newhouse phenomenon., Proc. Amer. Math. Soc., 134 (2006), 2229-2237.  doi: 10.1090/S0002-9939-06-08445-0.  Google Scholar

[2]

J. Alongi and G. Nelson, Recurrence and Topology, Graduate studies in mathematics, 85, American mathematical society, 2007. doi: 10.1090/gsm/085.  Google Scholar

[3]

L. Bakker and T. Fisher, Open sets of diffeomorphisms with trivial centralizer in the $C^1$-topology, Nonlinearity, 27 (2014), 2869-2885.  doi: 10.1088/0951-7715/27/12/2869.  Google Scholar

[4]

C. Bonatti and S. Crovisier, Récurrence et généricité., Invent. Math., 158 (2004), 33-104.  doi: 10.1007/s00222-004-0368-1.  Google Scholar

[5]

C. BonattiS. Crovisier and A. Wilkinson, The $C^1$ generic diffeomorphism has trivial centralizer, Publications Mathématiques de l'IHÉS, 109 (2009), 185-244.  doi: 10.1007/s10240-009-0021-z.  Google Scholar

[6]

C. BonattiL. Diaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[7]

C. BonattiN. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 1307-1337.  doi: 10.1017/S0143385706000253.  Google Scholar

[8]

W. BonomoJ. Rocha and P. Varandas, The centralizer of Komuro-expansive flows and expansive $\Bbb R^d$ actions, Math. Z., 289 (2018), 1059-1088.  doi: 10.1007/s00209-017-1988-7.  Google Scholar

[9]

W. Bonomo and P. Varandas, $C^1$-generic sectional Axiom A flows have trivial centralizer, Port. Math., 76 (2019), 29-48.  doi: 10.4171/PM/2025.  Google Scholar

[10]

W. Bonomo and P. Varandas, A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, 267 (2019), 1748-1766.  doi: 10.1016/j.jde.2019.02.022.  Google Scholar

[11]

L. Burslem, Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 55-87.  doi: 10.1017/S0143385703000191.  Google Scholar

[12]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publications Mathématiques de l'IHÉS, 104 (2006), 87-141.  doi: 10.1007/s10240-006-0002-4.  Google Scholar

[13]

S. Crovisier and D. Yang, Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields, C. R. Math. Acad. Sci. Paris, 353 (2015), 85-88, arXiv: 1702.05994. doi: 10.1016/j.crma.2014.10.015.  Google Scholar

[14]

T. Fisher, Trivial centralizers for axiom A diffeomorphisms, Nonlinearity, 21 (2008), 2505-2517.  doi: 10.1088/0951-7715/21/11/002.  Google Scholar

[15]

T. Fisher, Trivial centralizers for codimension-one attractors, Bull. Lond. Math. Soc., 21 (2009), 51-56.  doi: 10.1112/blms/bdn100.  Google Scholar

[16]

K. Kato and A. Morimoto, Topological stability of Anosov flows and their centralizers, Topology, 12 (1973), 255-273.  doi: 10.1016/0040-9383(73)90012-8.  Google Scholar

[17]

N. Kopell, Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure Math., XIV (1970), 165-184.   Google Scholar

[18]

M. LeguilD. Obata and B. Santiago, On the centralizer of vector fields: Criteria of triviality and genericity results, Math. Z., 297 (2021), 283-337.  doi: 10.1007/s00209-020-02511-x.  Google Scholar

[19]

I. Mundet I Riera, Automorphisms of generic gradient vector fields with prescribed finite symmetries, Revista Matemática Iberoamericana, 35 (2019), 1281-1308.  doi: 10.4171/rmi/1083.  Google Scholar

[20]

M. Oka, Expansive flows and their centralizers,, Nagoya Math. J., 64 (1976), 1-15.  doi: 10.1017/S0027763000017517.  Google Scholar

[21]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[22]

J. Palis and J. C. Yoccoz, Centralizers of {A}nosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4), 22 (1989), 98-108. doi: 10.24033/asens. 1577.  Google Scholar

[23]

J. Palis and J. C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), 22 (1989), 81-98. doi: 10.24033/asens. 1576.  Google Scholar

[24]

M. Peixoto, Structural stability on two-dimensional manifolds, Bol. Soc. Mat. Mexicana (2), 5 (1960), 188-189.   Google Scholar

[25]

P. Sad, Centralizers of vector fields, Topology, 18 (1979), 97-104.  doi: 10.1016/0040-9383(79)90027-2.  Google Scholar

[26]

S. Smale, Dynamics retrospective: Great problems, attempts that failed, Nonlinear Science: The Next Decade, Los Alamos, NM, 1990, Physica D., 51 (1991), 267-273.  doi: 10.1016/0167-2789(91)90238-5.  Google Scholar

[27]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[28]

R. Thom, Sur Les Intégrales Premières d'un Système Différentiel sur une Variété Compacte, Unpublished manuscript. Google Scholar

show all references

References:
[1]

F. AbdenurC. Bonatti and S. Crovisier, Global dominated splittings and the $C^1$-Newhouse phenomenon., Proc. Amer. Math. Soc., 134 (2006), 2229-2237.  doi: 10.1090/S0002-9939-06-08445-0.  Google Scholar

[2]

J. Alongi and G. Nelson, Recurrence and Topology, Graduate studies in mathematics, 85, American mathematical society, 2007. doi: 10.1090/gsm/085.  Google Scholar

[3]

L. Bakker and T. Fisher, Open sets of diffeomorphisms with trivial centralizer in the $C^1$-topology, Nonlinearity, 27 (2014), 2869-2885.  doi: 10.1088/0951-7715/27/12/2869.  Google Scholar

[4]

C. Bonatti and S. Crovisier, Récurrence et généricité., Invent. Math., 158 (2004), 33-104.  doi: 10.1007/s00222-004-0368-1.  Google Scholar

[5]

C. BonattiS. Crovisier and A. Wilkinson, The $C^1$ generic diffeomorphism has trivial centralizer, Publications Mathématiques de l'IHÉS, 109 (2009), 185-244.  doi: 10.1007/s10240-009-0021-z.  Google Scholar

[6]

C. BonattiL. Diaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.  doi: 10.4007/annals.2003.158.355.  Google Scholar

[7]

C. BonattiN. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 1307-1337.  doi: 10.1017/S0143385706000253.  Google Scholar

[8]

W. BonomoJ. Rocha and P. Varandas, The centralizer of Komuro-expansive flows and expansive $\Bbb R^d$ actions, Math. Z., 289 (2018), 1059-1088.  doi: 10.1007/s00209-017-1988-7.  Google Scholar

[9]

W. Bonomo and P. Varandas, $C^1$-generic sectional Axiom A flows have trivial centralizer, Port. Math., 76 (2019), 29-48.  doi: 10.4171/PM/2025.  Google Scholar

[10]

W. Bonomo and P. Varandas, A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, 267 (2019), 1748-1766.  doi: 10.1016/j.jde.2019.02.022.  Google Scholar

[11]

L. Burslem, Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 55-87.  doi: 10.1017/S0143385703000191.  Google Scholar

[12]

S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publications Mathématiques de l'IHÉS, 104 (2006), 87-141.  doi: 10.1007/s10240-006-0002-4.  Google Scholar

[13]

S. Crovisier and D. Yang, Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields, C. R. Math. Acad. Sci. Paris, 353 (2015), 85-88, arXiv: 1702.05994. doi: 10.1016/j.crma.2014.10.015.  Google Scholar

[14]

T. Fisher, Trivial centralizers for axiom A diffeomorphisms, Nonlinearity, 21 (2008), 2505-2517.  doi: 10.1088/0951-7715/21/11/002.  Google Scholar

[15]

T. Fisher, Trivial centralizers for codimension-one attractors, Bull. Lond. Math. Soc., 21 (2009), 51-56.  doi: 10.1112/blms/bdn100.  Google Scholar

[16]

K. Kato and A. Morimoto, Topological stability of Anosov flows and their centralizers, Topology, 12 (1973), 255-273.  doi: 10.1016/0040-9383(73)90012-8.  Google Scholar

[17]

N. Kopell, Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure Math., XIV (1970), 165-184.   Google Scholar

[18]

M. LeguilD. Obata and B. Santiago, On the centralizer of vector fields: Criteria of triviality and genericity results, Math. Z., 297 (2021), 283-337.  doi: 10.1007/s00209-020-02511-x.  Google Scholar

[19]

I. Mundet I Riera, Automorphisms of generic gradient vector fields with prescribed finite symmetries, Revista Matemática Iberoamericana, 35 (2019), 1281-1308.  doi: 10.4171/rmi/1083.  Google Scholar

[20]

M. Oka, Expansive flows and their centralizers,, Nagoya Math. J., 64 (1976), 1-15.  doi: 10.1017/S0027763000017517.  Google Scholar

[21]

J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[22]

J. Palis and J. C. Yoccoz, Centralizers of {A}nosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4), 22 (1989), 98-108. doi: 10.24033/asens. 1577.  Google Scholar

[23]

J. Palis and J. C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), 22 (1989), 81-98. doi: 10.24033/asens. 1576.  Google Scholar

[24]

M. Peixoto, Structural stability on two-dimensional manifolds, Bol. Soc. Mat. Mexicana (2), 5 (1960), 188-189.   Google Scholar

[25]

P. Sad, Centralizers of vector fields, Topology, 18 (1979), 97-104.  doi: 10.1016/0040-9383(79)90027-2.  Google Scholar

[26]

S. Smale, Dynamics retrospective: Great problems, attempts that failed, Nonlinear Science: The Next Decade, Los Alamos, NM, 1990, Physica D., 51 (1991), 267-273.  doi: 10.1016/0167-2789(91)90238-5.  Google Scholar

[27]

S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.  doi: 10.1007/BF03025291.  Google Scholar

[28]

R. Thom, Sur Les Intégrales Premières d'un Système Différentiel sur une Variété Compacte, Unpublished manuscript. Google Scholar

[1]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[2]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[3]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[4]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[5]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[6]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[7]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[8]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[9]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[10]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[11]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[12]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[13]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[14]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[15]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[16]

Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[19]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[20]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (5)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]