-
Previous Article
Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition
- DCDS Home
- This Issue
-
Next Article
Convergence of nonlocal geometric flows to anisotropic mean curvature motion
Symmetries of vector fields: The diffeomorphism centralizer
Department of Mathematics, The University of Chicago, Chicago, IL, 60637, USA |
In this paper we study the diffeomorphism centralizer of a vector field: given a vector field it is the set of diffeomorphisms that commutes with the flow. Our main theorem states that for a $ C^1 $-generic diffeomorphism having at most finitely many sinks or sources, the diffeomorphism centralizer is quasi-trivial. In certain cases, we can promote the quasi-triviality to triviality. We also obtain a criterion for a diffeomorphism in the centralizer to be a reparametrization of the flow.
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier,
Global dominated splittings and the $C^1$-Newhouse phenomenon., Proc. Amer. Math. Soc., 134 (2006), 2229-2237.
doi: 10.1090/S0002-9939-06-08445-0. |
[2] |
J. Alongi and G. Nelson, Recurrence and Topology, Graduate studies in mathematics, 85, American mathematical society, 2007.
doi: 10.1090/gsm/085. |
[3] |
L. Bakker and T. Fisher,
Open sets of diffeomorphisms with trivial centralizer in the $C^1$-topology, Nonlinearity, 27 (2014), 2869-2885.
doi: 10.1088/0951-7715/27/12/2869. |
[4] |
C. Bonatti and S. Crovisier,
Récurrence et généricité., Invent. Math., 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1. |
[5] |
C. Bonatti, S. Crovisier and A. Wilkinson,
The $C^1$ generic diffeomorphism has trivial centralizer, Publications Mathématiques de l'IHÉS, 109 (2009), 185-244.
doi: 10.1007/s10240-009-0021-z. |
[6] |
C. Bonatti, L. Diaz and E. Pujals,
A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.
doi: 10.4007/annals.2003.158.355. |
[7] |
C. Bonatti, N. Gourmelon and T. Vivier,
Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 1307-1337.
doi: 10.1017/S0143385706000253. |
[8] |
W. Bonomo, J. Rocha and P. Varandas,
The centralizer of Komuro-expansive flows and expansive $\Bbb R^d$ actions, Math. Z., 289 (2018), 1059-1088.
doi: 10.1007/s00209-017-1988-7. |
[9] |
W. Bonomo and P. Varandas,
$C^1$-generic sectional Axiom A flows have trivial centralizer, Port. Math., 76 (2019), 29-48.
doi: 10.4171/PM/2025. |
[10] |
W. Bonomo and P. Varandas,
A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, 267 (2019), 1748-1766.
doi: 10.1016/j.jde.2019.02.022. |
[11] |
L. Burslem,
Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 55-87.
doi: 10.1017/S0143385703000191. |
[12] |
S. Crovisier,
Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publications Mathématiques de l'IHÉS, 104 (2006), 87-141.
doi: 10.1007/s10240-006-0002-4. |
[13] |
S. Crovisier and D. Yang, Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields, C. R. Math. Acad. Sci. Paris, 353 (2015), 85-88, arXiv: 1702.05994.
doi: 10.1016/j.crma.2014.10.015. |
[14] |
T. Fisher,
Trivial centralizers for axiom A diffeomorphisms, Nonlinearity, 21 (2008), 2505-2517.
doi: 10.1088/0951-7715/21/11/002. |
[15] |
T. Fisher,
Trivial centralizers for codimension-one attractors, Bull. Lond. Math. Soc., 21 (2009), 51-56.
doi: 10.1112/blms/bdn100. |
[16] |
K. Kato and A. Morimoto,
Topological stability of Anosov flows and their centralizers, Topology, 12 (1973), 255-273.
doi: 10.1016/0040-9383(73)90012-8. |
[17] |
N. Kopell,
Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure Math., XIV (1970), 165-184.
|
[18] |
M. Leguil, D. Obata and B. Santiago,
On the centralizer of vector fields: Criteria of triviality and genericity results, Math. Z., 297 (2021), 283-337.
doi: 10.1007/s00209-020-02511-x. |
[19] |
I. Mundet I Riera,
Automorphisms of generic gradient vector fields with prescribed finite symmetries, Revista Matemática Iberoamericana, 35 (2019), 1281-1308.
doi: 10.4171/rmi/1083. |
[20] |
M. Oka,
Expansive flows and their centralizers,, Nagoya Math. J., 64 (1976), 1-15.
doi: 10.1017/S0027763000017517. |
[21] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982. |
[22] |
J. Palis and J. C. Yoccoz, Centralizers of {A}nosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4), 22 (1989), 98-108.
doi: 10.24033/asens. 1577. |
[23] |
J. Palis and J. C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), 22 (1989), 81-98.
doi: 10.24033/asens. 1576. |
[24] |
M. Peixoto,
Structural stability on two-dimensional manifolds, Bol. Soc. Mat. Mexicana (2), 5 (1960), 188-189.
|
[25] |
P. Sad,
Centralizers of vector fields, Topology, 18 (1979), 97-104.
doi: 10.1016/0040-9383(79)90027-2. |
[26] |
S. Smale,
Dynamics retrospective: Great problems, attempts that failed, Nonlinear Science: The Next Decade, Los Alamos, NM, 1990, Physica D., 51 (1991), 267-273.
doi: 10.1016/0167-2789(91)90238-5. |
[27] |
S. Smale,
Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[28] |
R. Thom, Sur Les Intégrales Premières d'un Système Différentiel sur une Variété Compacte, Unpublished manuscript. Google Scholar |
show all references
References:
[1] |
F. Abdenur, C. Bonatti and S. Crovisier,
Global dominated splittings and the $C^1$-Newhouse phenomenon., Proc. Amer. Math. Soc., 134 (2006), 2229-2237.
doi: 10.1090/S0002-9939-06-08445-0. |
[2] |
J. Alongi and G. Nelson, Recurrence and Topology, Graduate studies in mathematics, 85, American mathematical society, 2007.
doi: 10.1090/gsm/085. |
[3] |
L. Bakker and T. Fisher,
Open sets of diffeomorphisms with trivial centralizer in the $C^1$-topology, Nonlinearity, 27 (2014), 2869-2885.
doi: 10.1088/0951-7715/27/12/2869. |
[4] |
C. Bonatti and S. Crovisier,
Récurrence et généricité., Invent. Math., 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1. |
[5] |
C. Bonatti, S. Crovisier and A. Wilkinson,
The $C^1$ generic diffeomorphism has trivial centralizer, Publications Mathématiques de l'IHÉS, 109 (2009), 185-244.
doi: 10.1007/s10240-009-0021-z. |
[6] |
C. Bonatti, L. Diaz and E. Pujals,
A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.
doi: 10.4007/annals.2003.158.355. |
[7] |
C. Bonatti, N. Gourmelon and T. Vivier,
Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 1307-1337.
doi: 10.1017/S0143385706000253. |
[8] |
W. Bonomo, J. Rocha and P. Varandas,
The centralizer of Komuro-expansive flows and expansive $\Bbb R^d$ actions, Math. Z., 289 (2018), 1059-1088.
doi: 10.1007/s00209-017-1988-7. |
[9] |
W. Bonomo and P. Varandas,
$C^1$-generic sectional Axiom A flows have trivial centralizer, Port. Math., 76 (2019), 29-48.
doi: 10.4171/PM/2025. |
[10] |
W. Bonomo and P. Varandas,
A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, 267 (2019), 1748-1766.
doi: 10.1016/j.jde.2019.02.022. |
[11] |
L. Burslem,
Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 55-87.
doi: 10.1017/S0143385703000191. |
[12] |
S. Crovisier,
Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publications Mathématiques de l'IHÉS, 104 (2006), 87-141.
doi: 10.1007/s10240-006-0002-4. |
[13] |
S. Crovisier and D. Yang, Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields, C. R. Math. Acad. Sci. Paris, 353 (2015), 85-88, arXiv: 1702.05994.
doi: 10.1016/j.crma.2014.10.015. |
[14] |
T. Fisher,
Trivial centralizers for axiom A diffeomorphisms, Nonlinearity, 21 (2008), 2505-2517.
doi: 10.1088/0951-7715/21/11/002. |
[15] |
T. Fisher,
Trivial centralizers for codimension-one attractors, Bull. Lond. Math. Soc., 21 (2009), 51-56.
doi: 10.1112/blms/bdn100. |
[16] |
K. Kato and A. Morimoto,
Topological stability of Anosov flows and their centralizers, Topology, 12 (1973), 255-273.
doi: 10.1016/0040-9383(73)90012-8. |
[17] |
N. Kopell,
Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure Math., XIV (1970), 165-184.
|
[18] |
M. Leguil, D. Obata and B. Santiago,
On the centralizer of vector fields: Criteria of triviality and genericity results, Math. Z., 297 (2021), 283-337.
doi: 10.1007/s00209-020-02511-x. |
[19] |
I. Mundet I Riera,
Automorphisms of generic gradient vector fields with prescribed finite symmetries, Revista Matemática Iberoamericana, 35 (2019), 1281-1308.
doi: 10.4171/rmi/1083. |
[20] |
M. Oka,
Expansive flows and their centralizers,, Nagoya Math. J., 64 (1976), 1-15.
doi: 10.1017/S0027763000017517. |
[21] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982. |
[22] |
J. Palis and J. C. Yoccoz, Centralizers of {A}nosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4), 22 (1989), 98-108.
doi: 10.24033/asens. 1577. |
[23] |
J. Palis and J. C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), 22 (1989), 81-98.
doi: 10.24033/asens. 1576. |
[24] |
M. Peixoto,
Structural stability on two-dimensional manifolds, Bol. Soc. Mat. Mexicana (2), 5 (1960), 188-189.
|
[25] |
P. Sad,
Centralizers of vector fields, Topology, 18 (1979), 97-104.
doi: 10.1016/0040-9383(79)90027-2. |
[26] |
S. Smale,
Dynamics retrospective: Great problems, attempts that failed, Nonlinear Science: The Next Decade, Los Alamos, NM, 1990, Physica D., 51 (1991), 267-273.
doi: 10.1016/0167-2789(91)90238-5. |
[27] |
S. Smale,
Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291. |
[28] |
R. Thom, Sur Les Intégrales Premières d'un Système Différentiel sur une Variété Compacte, Unpublished manuscript. Google Scholar |
[1] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[2] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[3] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[4] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[5] |
Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035 |
[6] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[7] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[8] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[9] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[10] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[11] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[12] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[13] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[14] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[15] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[16] |
Lei Lei, Wenli Ren, Cuiling Fan. The differential spectrum of a class of power functions over finite fields. Advances in Mathematics of Communications, 2021, 15 (3) : 525-537. doi: 10.3934/amc.2020080 |
[17] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[18] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[19] |
Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006 |
[20] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]