
-
Previous Article
A phase transition for circle maps with a flat spot and different critical exponents
- DCDS Home
- This Issue
- Next Article
Modeling of crowds in regions with moving obstacles
Matrosov Institute for System Dynamics and Control Theory, 134 Lermontov St., Irkutsk, 664033, Russia |
We present a model of crowd motion in regions with moving obstacles, which is based on the notion of measure sweeping process. The obstacle is modeled by a set-valued map, whose values are complements to $ r $-prox-regular sets. The crowd motion obeys a nonlinear transport equation outside the obstacle and a normal cone condition (similar to that of the classical sweeping processes theory) on the boundary. We prove the well-posedness of the model, give an application to environment optimization problems, and provide some results of numerical computations.
References:
[1] |
L. Ambrosio and G. Crippa,
Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Basel: Birkhäuser, 2005. |
[3] |
V. I. Bogachev, Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-34514-5. |
[4] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33, Providence, RI: American Mathematical Society (AMS), 2001.
doi: 10.1090/gsm/033. |
[5] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Boston, MA: Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[6] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, vol. 264 of Graduate Texts in Mathematics, Springer London, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier,
Non-local crowd dynamics, Comptes Rendus Mathematique, 349 (2011), 769-772.
doi: 10.1016/j.crma.2011.07.005. |
[8] |
R. M. Colombo and E. Rossi,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[9] |
R. Colombo, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 353–379, http://journals.cambridge.org/abstract{\_}S1292811910000072.
doi: 10.1051/cocv/2010007. |
[10] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, vol. 8, Basel: Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[11] |
S. Di Marino, B. Maury and F. Santambrogio,
Measure sweeping processes, J. Convex Anal., 23 (2016), 567-601.
|
[12] |
H. Federer,
Curvature measures, Trans. Am. Math. Soc., 93 (1959), 418-491.
doi: 10.1090/S0002-9947-1959-0110078-1. |
[13] |
A. Figalli and N. Gigli,
A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, Journal des Mathematiques Pures et Appliquees, 94 (2010), 107-130.
doi: 10.1016/j.matpur.2009.11.005. |
[14] |
D. Helbing, I. J. Farkas and T. Vicsek, Crowd disasters and simulation of panic situations, The Science of Disasters, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,330–350
doi: 10.1007/978-3-642-56257-0\_11. |
[15] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[16] |
B. Maury and S. Faure, Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds, Hackensack, NJ: World Scientific, 2019. |
[17] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[18] |
B. Piccoli and F. Rossi,
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124 (2013), 73-105.
doi: 10.1007/s10440-012-9771-6. |
[19] |
B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, in Crowd Dynamics, Volume 1. Theory, Models, and Safety Problems, Cham: Birkhäuser, 2018,137–165. |
[20] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[21] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, vol. 87, Cham: Birkhäuser/Springer, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
M. Sene and L. Thibault,
Regularization of dynamical systems associated with prox-regular moving sets., J. Nonlinear Convex Anal., 15 (2014), 647-663.
|
[24] |
L. Thibault,
Regularization of nonconvex sweeping process in Hilbert space, Set-Valued Analysis, 16 (2008), 319-333.
doi: 10.1007/s11228-008-0083-y. |
[25] |
C. Villani, Optimal Transport. Old and New, vol. 338, Berlin: Springer, 2009.
doi: 10.1007/978-3-540-71050-9. |
show all references
References:
[1] |
L. Ambrosio and G. Crippa,
Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Basel: Birkhäuser, 2005. |
[3] |
V. I. Bogachev, Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-34514-5. |
[4] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33, Providence, RI: American Mathematical Society (AMS), 2001.
doi: 10.1090/gsm/033. |
[5] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Boston, MA: Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[6] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, vol. 264 of Graduate Texts in Mathematics, Springer London, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier,
Non-local crowd dynamics, Comptes Rendus Mathematique, 349 (2011), 769-772.
doi: 10.1016/j.crma.2011.07.005. |
[8] |
R. M. Colombo and E. Rossi,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[9] |
R. Colombo, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 353–379, http://journals.cambridge.org/abstract{\_}S1292811910000072.
doi: 10.1051/cocv/2010007. |
[10] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, vol. 8, Basel: Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[11] |
S. Di Marino, B. Maury and F. Santambrogio,
Measure sweeping processes, J. Convex Anal., 23 (2016), 567-601.
|
[12] |
H. Federer,
Curvature measures, Trans. Am. Math. Soc., 93 (1959), 418-491.
doi: 10.1090/S0002-9947-1959-0110078-1. |
[13] |
A. Figalli and N. Gigli,
A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, Journal des Mathematiques Pures et Appliquees, 94 (2010), 107-130.
doi: 10.1016/j.matpur.2009.11.005. |
[14] |
D. Helbing, I. J. Farkas and T. Vicsek, Crowd disasters and simulation of panic situations, The Science of Disasters, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,330–350
doi: 10.1007/978-3-642-56257-0\_11. |
[15] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[16] |
B. Maury and S. Faure, Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds, Hackensack, NJ: World Scientific, 2019. |
[17] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[18] |
B. Piccoli and F. Rossi,
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124 (2013), 73-105.
doi: 10.1007/s10440-012-9771-6. |
[19] |
B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, in Crowd Dynamics, Volume 1. Theory, Models, and Safety Problems, Cham: Birkhäuser, 2018,137–165. |
[20] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[21] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, vol. 87, Cham: Birkhäuser/Springer, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
M. Sene and L. Thibault,
Regularization of dynamical systems associated with prox-regular moving sets., J. Nonlinear Convex Anal., 15 (2014), 647-663.
|
[24] |
L. Thibault,
Regularization of nonconvex sweeping process in Hilbert space, Set-Valued Analysis, 16 (2008), 319-333.
doi: 10.1007/s11228-008-0083-y. |
[25] |
C. Villani, Optimal Transport. Old and New, vol. 338, Berlin: Springer, 2009.
doi: 10.1007/978-3-540-71050-9. |



[1] |
Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929 |
[2] |
Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573 |
[3] |
Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 |
[4] |
Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014 |
[5] |
Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem†. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048 |
[6] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[7] |
Tan H. Cao, Boris S. Mordukhovich. Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4191-4216. doi: 10.3934/dcdsb.2019078 |
[8] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[9] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[10] |
Gabriela Marinoschi. Well posedness of a time-difference scheme for a degenerate fast diffusion problem. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 435-454. doi: 10.3934/dcdsb.2010.13.435 |
[11] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[12] |
Seung-Yeal Ha, Jinyeong Park, Xiongtao Zhang. A global well-posedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1317-1344. doi: 10.3934/dcdsb.2019229 |
[13] |
Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763 |
[14] |
Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028 |
[15] |
George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151 |
[16] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[17] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
[18] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[19] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[20] |
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]