
-
Previous Article
Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph
- DCDS Home
- This Issue
-
Next Article
PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video
Modeling of crowds in regions with moving obstacles
Matrosov Institute for System Dynamics and Control Theory, 134 Lermontov St., Irkutsk, 664033, Russia |
We present a model of crowd motion in regions with moving obstacles, which is based on the notion of measure sweeping process. The obstacle is modeled by a set-valued map, whose values are complements to $ r $-prox-regular sets. The crowd motion obeys a nonlinear transport equation outside the obstacle and a normal cone condition (similar to that of the classical sweeping processes theory) on the boundary. We prove the well-posedness of the model, give an application to environment optimization problems, and provide some results of numerical computations.
References:
[1] |
L. Ambrosio and G. Crippa,
Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Basel: Birkhäuser, 2005. |
[3] |
V. I. Bogachev, Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-34514-5. |
[4] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33, Providence, RI: American Mathematical Society (AMS), 2001.
doi: 10.1090/gsm/033. |
[5] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Boston, MA: Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[6] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, vol. 264 of Graduate Texts in Mathematics, Springer London, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier,
Non-local crowd dynamics, Comptes Rendus Mathematique, 349 (2011), 769-772.
doi: 10.1016/j.crma.2011.07.005. |
[8] |
R. M. Colombo and E. Rossi,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[9] |
R. Colombo, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 353–379, http://journals.cambridge.org/abstract{\_}S1292811910000072.
doi: 10.1051/cocv/2010007. |
[10] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, vol. 8, Basel: Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[11] |
S. Di Marino, B. Maury and F. Santambrogio,
Measure sweeping processes, J. Convex Anal., 23 (2016), 567-601.
|
[12] |
H. Federer,
Curvature measures, Trans. Am. Math. Soc., 93 (1959), 418-491.
doi: 10.1090/S0002-9947-1959-0110078-1. |
[13] |
A. Figalli and N. Gigli,
A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, Journal des Mathematiques Pures et Appliquees, 94 (2010), 107-130.
doi: 10.1016/j.matpur.2009.11.005. |
[14] |
D. Helbing, I. J. Farkas and T. Vicsek, Crowd disasters and simulation of panic situations, The Science of Disasters, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,330–350
doi: 10.1007/978-3-642-56257-0\_11. |
[15] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[16] |
B. Maury and S. Faure, Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds, Hackensack, NJ: World Scientific, 2019. |
[17] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[18] |
B. Piccoli and F. Rossi,
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124 (2013), 73-105.
doi: 10.1007/s10440-012-9771-6. |
[19] |
B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, in Crowd Dynamics, Volume 1. Theory, Models, and Safety Problems, Cham: Birkhäuser, 2018,137–165. |
[20] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[21] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, vol. 87, Cham: Birkhäuser/Springer, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
M. Sene and L. Thibault,
Regularization of dynamical systems associated with prox-regular moving sets., J. Nonlinear Convex Anal., 15 (2014), 647-663.
|
[24] |
L. Thibault,
Regularization of nonconvex sweeping process in Hilbert space, Set-Valued Analysis, 16 (2008), 319-333.
doi: 10.1007/s11228-008-0083-y. |
[25] |
C. Villani, Optimal Transport. Old and New, vol. 338, Berlin: Springer, 2009.
doi: 10.1007/978-3-540-71050-9. |
show all references
References:
[1] |
L. Ambrosio and G. Crippa,
Continuity equations and ODE flows with non-smooth velocity, Proc. R. Soc. Edinb., Sect. A, Math., 144 (2014), 1191-1244.
doi: 10.1017/S0308210513000085. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Basel: Birkhäuser, 2005. |
[3] |
V. I. Bogachev, Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
doi: 10.1007/978-3-540-34514-5. |
[4] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33, Providence, RI: American Mathematical Society (AMS), 2001.
doi: 10.1090/gsm/033. |
[5] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Boston, MA: Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[6] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, vol. 264 of Graduate Texts in Mathematics, Springer London, London, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier,
Non-local crowd dynamics, Comptes Rendus Mathematique, 349 (2011), 769-772.
doi: 10.1016/j.crma.2011.07.005. |
[8] |
R. M. Colombo and E. Rossi,
Nonlocal conservation laws in bounded domains, SIAM J. Math. Anal., 50 (2018), 4041-4065.
doi: 10.1137/18M1171783. |
[9] |
R. Colombo, Control of the continuity equation with a non local flow, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 353–379, http://journals.cambridge.org/abstract{\_}S1292811910000072.
doi: 10.1051/cocv/2010007. |
[10] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, vol. 8, Basel: Birkhäuser, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[11] |
S. Di Marino, B. Maury and F. Santambrogio,
Measure sweeping processes, J. Convex Anal., 23 (2016), 567-601.
|
[12] |
H. Federer,
Curvature measures, Trans. Am. Math. Soc., 93 (1959), 418-491.
doi: 10.1090/S0002-9947-1959-0110078-1. |
[13] |
A. Figalli and N. Gigli,
A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions, Journal des Mathematiques Pures et Appliquees, 94 (2010), 107-130.
doi: 10.1016/j.matpur.2009.11.005. |
[14] |
D. Helbing, I. J. Farkas and T. Vicsek, Crowd disasters and simulation of panic situations, The Science of Disasters, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,330–350
doi: 10.1007/978-3-642-56257-0\_11. |
[15] |
R. L. Hughes,
The flow of human crowds, Annual Review of Fluid Mechanics, 35 (2003), 169-182.
doi: 10.1146/annurev.fluid.35.101101.161136. |
[16] |
B. Maury and S. Faure, Crowds in Equations. An Introduction to the Microscopic Modeling of Crowds, Hackensack, NJ: World Scientific, 2019. |
[17] |
A. Mogilner and L. Edelstein-Keshet,
A non-local model for a swarm, Journal of Mathematical Biology, 38 (1999), 534-570.
doi: 10.1007/s002850050158. |
[18] |
B. Piccoli and F. Rossi,
Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124 (2013), 73-105.
doi: 10.1007/s10440-012-9771-6. |
[19] |
B. Piccoli and F. Rossi, Measure-theoretic models for crowd dynamics, in Crowd Dynamics, Volume 1. Theory, Models, and Safety Problems, Cham: Birkhäuser, 2018,137–165. |
[20] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[21] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[22] |
F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling, vol. 87, Cham: Birkhäuser/Springer, 2015.
doi: 10.1007/978-3-319-20828-2. |
[23] |
M. Sene and L. Thibault,
Regularization of dynamical systems associated with prox-regular moving sets., J. Nonlinear Convex Anal., 15 (2014), 647-663.
|
[24] |
L. Thibault,
Regularization of nonconvex sweeping process in Hilbert space, Set-Valued Analysis, 16 (2008), 319-333.
doi: 10.1007/s11228-008-0083-y. |
[25] |
C. Villani, Optimal Transport. Old and New, vol. 338, Berlin: Springer, 2009.
doi: 10.1007/978-3-540-71050-9. |



[1] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[2] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[3] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[4] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[5] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[6] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[7] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[8] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[9] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[10] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[11] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[12] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[13] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[14] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[15] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[16] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[17] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[18] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[19] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
[20] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021129 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]