November  2021, 41(11): 5183-5208. doi: 10.3934/dcds.2021073

Nonlinear stability of elliptic equilibria in hamiltonian systems with exponential time estimates

1. 

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, VIII Región, Chile

2. 

Departamento de Estadística, Informática y Matemáticas, Institute for Advanced Materials and Mathematics (INAMAT2), Universidad Pública de Navarra, 31006 Pamplona, Spain

3. 

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, VIII Región, Chile

* Corresponding author: Jesús F. Palacián

Received  August 2020 Revised  March 2021 Published  November 2021 Early access  April 2021

Fund Project: The authors are partially supported by Projects MTM 2014-59433-C2-1-P of the Ministry of Economy and Competitiveness of Spain and MTM 2017-88137-C2-1-P of the Ministry of Science, Innovation and Universities of Spain. D. C.-D. acknowledges support from CONICYT PhD/2016-21161143. C. Vidal is partially supported by Fondecyt, grant 1180288

In the framework of nonlinear stability of elliptic equilibria in Hamiltonian systems with $ n $ degrees of freedom we provide a criterion to obtain a type of formal stability, called Lie stability. Our result generalises previous approaches, as exponential stability in the sense of Nekhoroshev (excepting a few situations) and other classical results on formal stability of equilibria. In case of Lie stable systems we bound the solutions near the equilibrium over exponentially long times. Some examples are provided to illustrate our main contributions.

Citation: Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas. Nonlinear stability of elliptic equilibria in hamiltonian systems with exponential time estimates. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5183-5208. doi: 10.3934/dcds.2021073
References:
[1]

G. BenettinF. Fassò and M. Guzzo, Nekhoroshev stability of $L_4$ and $L_5$ in the spatial restricted three body problem, Regul. Chaotic Dyn., 3 (1998), 56-72.  doi: 10.1070/rd1998v003n03ABEH000080.

[2]

A. Bounemoura, B. Fayad and L. Niederman, Super-exponential stability for generic real-analytic elliptic equilibrium points, Adv. Math. 366 (2020), 107088, 30 pp. doi: 10.1016/j.aim.2020.107088.

[3]

A. D. Bryuno, Formal stability of Hamiltonian systems, Mat. Zametki, 1 (1967), 325-330. 

[4]

H. E. Cabral and K. R. Meyer, Stability of equilibria and fixed points of conservative systems, Nonlinearity, 12 (1999), 1351-1362.  doi: 10.1088/0951-7715/12/5/309.

[5]

D. Cárcamo-Díaz, Stability and Estimates near Elliptic Equilibrium Points in Hamiltonian Systems and Applications, Ph.D thesis, Universidad del Bío-Bío in Concepción, Chile, 2019.

[6]

D. Cárcamo-Díaz and C. Vidal, Instability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom under the existence of a single resonance and an invariant ray, J. Differential Equations, 265 (2018), 6295-6315.  doi: 10.1016/j.jde.2018.07.022.

[7]

D. Cárcamo-Díaz and C. Vidal, Instability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom under the existence of multiple resonances and an application to the spatial satellite problem, J. Dynam. Differential Equations, 31 (2019), 853-882.  doi: 10.1007/s10884-018-9679-6.

[8]

D. Cárcamo-DíazJ. F. PalaciánC. Vidal and P. Yanguas, On the nonlinear stability of the triangular points in the circular spatial restricted three-body problem, Regul. Chaotic Dyn., 25 (2020), 131-148.  doi: 10.1134/S156035472002001X.

[9]

D. Cárcamo-Díaz, J. F. Palacián, C. Vidal and P. Yanguas, Nonlinear stability in the spatial attitude motion of a satellite in a circular orbit, preprint, 2021.

[10]

P. ChartierA. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅲ: Error bounds, Found. Comput. Math., 15 (2015), 591-612.  doi: 10.1007/s10208-013-9175-7.

[11]

H. S. DumasK. R. MeyerJ. F. Palacián and P. Yanguas, Asymptotic stability estimates near an equilibrium point, J. Differential Equations, 263 (2017), 1125-1139.  doi: 10.1016/j.jde.2017.03.011.

[12]

F. FassòM. Guzzo and G. Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Commun. Math. Phys., 197 (1998), 347-360.  doi: 10.1007/s002200050454.

[13]

B. Fayad, Lyapunov unstable elliptic equilibria, preprint, hal-02414963.

[14]

A. Giorgilli, Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 423-439. 

[15]

J. Glimm, Formal stability of Hamiltonian systems, Comm. Pure Appl. Math., 17 (1964), 509-526.  doi: 10.1002/cpa.3160170408.

[16]

M. GuzzoL. Chierchia and G. Benettin, The steep Nekhoroshev's theorem, Commun. Math. Phys., 342 (2016), 569-601.  doi: 10.1007/s00220-015-2555-x.

[17]

M. GuzzoE. Lega and C. Froeschlé, Diffusion and stability in perturbed non-convex integrable systems, Nonlinearity, 19 (2006), 1049-1067.  doi: 10.1088/0951-7715/19/5/003.

[18]

L. G. Khazin, On the stability of Hamiltonian systems in the presence of resonances, Prikl. Mat. Mekh. 35 1971,423–431. doi: 10.1016/0021-8928(71)90006-2.

[19]

L. G. Khazin, Interaction of third-order resonances in problems of the stability of Hamiltonian systems, Prikl. Mat. Mekh., 48 (1984), 496-498.  doi: 10.1016/0021-8928(84)90146-1.

[20]

A. L. Kunitsyn and A. A. Perezhogin, The stability of neutral systems in the case of a multiple fourth-order resonance, Prikl. Mat. Mekh., 49 (1985), 57-63.  doi: 10.1016/0021-8928(85)90127-3.

[21]

P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys, 47 (1992), 57-133.  doi: 10.1070/RM1992v047n06ABEH000965.

[22]

A. P. Markeev, On the stability of the triangular libration points in the circular bounded three body problem, Prikl. Mat. Mekh., 33 (1969), 105-110.  doi: 10.1016/0021-8928(69)90117-8.

[23]

A. P. Markeev, Libration Points in Celestial Mechanics and Space Dynamics, Moscow, Nauka (in Russian), 1978.

[24]

K. R. Meyer and D. C. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, 3$^{rd}$ edition, Applied Mathematical Sciences, 90, Springer, New York, 2017. doi: 10.1007/978-3-319-53691-0.

[25]

K. R. MeyerJ. F. Palacián and P. Yanguas, Normally stable Hamiltonian systems, Discrete Contin. Dynam. Syst., 33 (2013), 1201-1214.  doi: 10.3934/dcds.2013.33.1201.

[26]

J. Moser, Stabilitätsverhalten kanonischer Differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 6 (1955), 87-120. 

[27]

J. Moser, New aspects in the theory of stability of Hamiltonian systems, Comm. Pure Appl. Math., 11 (1958), 81-114.  doi: 10.1002/cpa.3160110105.

[28]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh., 48 (1984), 197-204.  doi: 10.1016/0021-8928(84)90078-9.

[29]

N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. I, Usp. Mat. Nauk., 32 (1977), 5-66. 

[30]

L. Niederman, Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system, Nonlinearity, 11 (1998), 1465-1479.  doi: 10.1088/0951-7715/11/6/002.

[31]

L. Niederman, Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, 27 (2007), 905-928.  doi: 10.1017/S0143385706000927.

[32]

J. Pöschel, On Nekhoroshev's estimate at an elliptic equilibrium, Int. Math. Res. Not., 1999 (1999), 203-215.  doi: 10.1155/S1073792899000100.

[33]

F. dos SantosJ. E. Mansilla and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems with $n$-degrees of freedom in the case of single resonance, J. Dynam. Differential Equations, 22 (2010), 805-821.  doi: 10.1007/s10884-010-9176-z.

[34]

F. dos Santos and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems in the case of multiple resonances, J. Differential Equations, 258 (2015), 3880-3901.  doi: 10.1016/j.jde.2015.01.044.

[35]

F. dos Santos and C. Vidal, Stability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom and single resonance in the critical case, J. Differential Equations, 264 (2018), 5152-5179.  doi: 10.1016/j.jde.2017.12.033.

[36]

G. Schirinzi and M. Guzzo, On the formulation of new explicit conditions for steepness from a former result of N. N. Nekhoroshev, J. Math. Phys., 54 (2013), 072702, 23 pp. doi: 10.1063/1.4813059.

[37]

C. L. Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differential Gleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., 128 (1954), 144-170.  doi: 10.1007/BF01360131.

[38]

V. E. Zhavnerchik, On the stability of autonomous systems in the presence of several resonances, Prikl. Mat. Mekh., 43 (1979), 229-234. 

show all references

References:
[1]

G. BenettinF. Fassò and M. Guzzo, Nekhoroshev stability of $L_4$ and $L_5$ in the spatial restricted three body problem, Regul. Chaotic Dyn., 3 (1998), 56-72.  doi: 10.1070/rd1998v003n03ABEH000080.

[2]

A. Bounemoura, B. Fayad and L. Niederman, Super-exponential stability for generic real-analytic elliptic equilibrium points, Adv. Math. 366 (2020), 107088, 30 pp. doi: 10.1016/j.aim.2020.107088.

[3]

A. D. Bryuno, Formal stability of Hamiltonian systems, Mat. Zametki, 1 (1967), 325-330. 

[4]

H. E. Cabral and K. R. Meyer, Stability of equilibria and fixed points of conservative systems, Nonlinearity, 12 (1999), 1351-1362.  doi: 10.1088/0951-7715/12/5/309.

[5]

D. Cárcamo-Díaz, Stability and Estimates near Elliptic Equilibrium Points in Hamiltonian Systems and Applications, Ph.D thesis, Universidad del Bío-Bío in Concepción, Chile, 2019.

[6]

D. Cárcamo-Díaz and C. Vidal, Instability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom under the existence of a single resonance and an invariant ray, J. Differential Equations, 265 (2018), 6295-6315.  doi: 10.1016/j.jde.2018.07.022.

[7]

D. Cárcamo-Díaz and C. Vidal, Instability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom under the existence of multiple resonances and an application to the spatial satellite problem, J. Dynam. Differential Equations, 31 (2019), 853-882.  doi: 10.1007/s10884-018-9679-6.

[8]

D. Cárcamo-DíazJ. F. PalaciánC. Vidal and P. Yanguas, On the nonlinear stability of the triangular points in the circular spatial restricted three-body problem, Regul. Chaotic Dyn., 25 (2020), 131-148.  doi: 10.1134/S156035472002001X.

[9]

D. Cárcamo-Díaz, J. F. Palacián, C. Vidal and P. Yanguas, Nonlinear stability in the spatial attitude motion of a satellite in a circular orbit, preprint, 2021.

[10]

P. ChartierA. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration Ⅲ: Error bounds, Found. Comput. Math., 15 (2015), 591-612.  doi: 10.1007/s10208-013-9175-7.

[11]

H. S. DumasK. R. MeyerJ. F. Palacián and P. Yanguas, Asymptotic stability estimates near an equilibrium point, J. Differential Equations, 263 (2017), 1125-1139.  doi: 10.1016/j.jde.2017.03.011.

[12]

F. FassòM. Guzzo and G. Benettin, Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems, Commun. Math. Phys., 197 (1998), 347-360.  doi: 10.1007/s002200050454.

[13]

B. Fayad, Lyapunov unstable elliptic equilibria, preprint, hal-02414963.

[14]

A. Giorgilli, Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 423-439. 

[15]

J. Glimm, Formal stability of Hamiltonian systems, Comm. Pure Appl. Math., 17 (1964), 509-526.  doi: 10.1002/cpa.3160170408.

[16]

M. GuzzoL. Chierchia and G. Benettin, The steep Nekhoroshev's theorem, Commun. Math. Phys., 342 (2016), 569-601.  doi: 10.1007/s00220-015-2555-x.

[17]

M. GuzzoE. Lega and C. Froeschlé, Diffusion and stability in perturbed non-convex integrable systems, Nonlinearity, 19 (2006), 1049-1067.  doi: 10.1088/0951-7715/19/5/003.

[18]

L. G. Khazin, On the stability of Hamiltonian systems in the presence of resonances, Prikl. Mat. Mekh. 35 1971,423–431. doi: 10.1016/0021-8928(71)90006-2.

[19]

L. G. Khazin, Interaction of third-order resonances in problems of the stability of Hamiltonian systems, Prikl. Mat. Mekh., 48 (1984), 496-498.  doi: 10.1016/0021-8928(84)90146-1.

[20]

A. L. Kunitsyn and A. A. Perezhogin, The stability of neutral systems in the case of a multiple fourth-order resonance, Prikl. Mat. Mekh., 49 (1985), 57-63.  doi: 10.1016/0021-8928(85)90127-3.

[21]

P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Math. Surveys, 47 (1992), 57-133.  doi: 10.1070/RM1992v047n06ABEH000965.

[22]

A. P. Markeev, On the stability of the triangular libration points in the circular bounded three body problem, Prikl. Mat. Mekh., 33 (1969), 105-110.  doi: 10.1016/0021-8928(69)90117-8.

[23]

A. P. Markeev, Libration Points in Celestial Mechanics and Space Dynamics, Moscow, Nauka (in Russian), 1978.

[24]

K. R. Meyer and D. C. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem, 3$^{rd}$ edition, Applied Mathematical Sciences, 90, Springer, New York, 2017. doi: 10.1007/978-3-319-53691-0.

[25]

K. R. MeyerJ. F. Palacián and P. Yanguas, Normally stable Hamiltonian systems, Discrete Contin. Dynam. Syst., 33 (2013), 1201-1214.  doi: 10.3934/dcds.2013.33.1201.

[26]

J. Moser, Stabilitätsverhalten kanonischer Differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 6 (1955), 87-120. 

[27]

J. Moser, New aspects in the theory of stability of Hamiltonian systems, Comm. Pure Appl. Math., 11 (1958), 81-114.  doi: 10.1002/cpa.3160110105.

[28]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikl. Mat. Mekh., 48 (1984), 197-204.  doi: 10.1016/0021-8928(84)90078-9.

[29]

N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. I, Usp. Mat. Nauk., 32 (1977), 5-66. 

[30]

L. Niederman, Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system, Nonlinearity, 11 (1998), 1465-1479.  doi: 10.1088/0951-7715/11/6/002.

[31]

L. Niederman, Prevalence of exponential stability among nearly integrable Hamiltonian systems, Ergodic Theory Dynam. Systems, 27 (2007), 905-928.  doi: 10.1017/S0143385706000927.

[32]

J. Pöschel, On Nekhoroshev's estimate at an elliptic equilibrium, Int. Math. Res. Not., 1999 (1999), 203-215.  doi: 10.1155/S1073792899000100.

[33]

F. dos SantosJ. E. Mansilla and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems with $n$-degrees of freedom in the case of single resonance, J. Dynam. Differential Equations, 22 (2010), 805-821.  doi: 10.1007/s10884-010-9176-z.

[34]

F. dos Santos and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems in the case of multiple resonances, J. Differential Equations, 258 (2015), 3880-3901.  doi: 10.1016/j.jde.2015.01.044.

[35]

F. dos Santos and C. Vidal, Stability of equilibrium solutions of Hamiltonian systems with $n$-degrees of freedom and single resonance in the critical case, J. Differential Equations, 264 (2018), 5152-5179.  doi: 10.1016/j.jde.2017.12.033.

[36]

G. Schirinzi and M. Guzzo, On the formulation of new explicit conditions for steepness from a former result of N. N. Nekhoroshev, J. Math. Phys., 54 (2013), 072702, 23 pp. doi: 10.1063/1.4813059.

[37]

C. L. Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differential Gleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann., 128 (1954), 144-170.  doi: 10.1007/BF01360131.

[38]

V. E. Zhavnerchik, On the stability of autonomous systems in the presence of several resonances, Prikl. Mat. Mekh., 43 (1979), 229-234. 

Figure 1.  On the left we plot the curves $ I_2 = 3 I_3 $ (blue) and $ 40 I_3^3 = I_2^3/2 $ (orange) showing that $ {\mathcal H}_6 $ changes sign in $ S $, hence Lie stability cannot be accomplished. On the right we consider $ {\mathcal H}_6 = 4 I_3^3 - I_2^3/3 $ and plot the curves $ I_2 = 3 I_3 $ (blue) and $ 4 I_3^3 = I_2^3/3 $ (orange) showing that the origin of $ \mathbb{R}^{6} $ is Lie stable for the Hamiltonian $ H_2 +{\mathcal H}_6 + \cdots $
[1]

PaweŁ Hitczenko, Georgi S. Medvedev. Stability of equilibria of randomly perturbed maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 369-381. doi: 10.3934/dcdsb.2017017

[2]

D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3093-3111. doi: 10.3934/cpaa.2021097

[3]

Yanbin Tang, Ming Wang. A remark on exponential stability of time-delayed Burgers equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 219-225. doi: 10.3934/dcdsb.2009.12.219

[4]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[5]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[6]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems and Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[7]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[8]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[9]

Christian Pötzsche, Stefan Siegmund, Fabian Wirth. A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1223-1241. doi: 10.3934/dcds.2003.9.1223

[10]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[11]

Guillaume Bal, Alexandre Jollivet. Stability estimates in stationary inverse transport. Inverse Problems and Imaging, 2008, 2 (4) : 427-454. doi: 10.3934/ipi.2008.2.427

[12]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[13]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[14]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[15]

Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems and Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039

[16]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[17]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[18]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047

[19]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[20]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (194)
  • HTML views (207)
  • Cited by (0)

[Back to Top]