This note treats several problems for the fractional perimeter or $ s $-perimeter on the sphere. The spherical fractional isoperimetric inequality is established. It turns out that the equality cases are exactly the spherical caps. Furthermore, the convergence of fractional perimeters to the surface area as $ s \nearrow 1 $ is proven. It is shown that their limit as $ s \searrow -\infty $ can be expressed in terms of the volume.
Citation: |
[1] |
E. Arbeiter and M. Zähle, Kinematic relations for Hausdorff moment measures in spherical spaces, Math. Nachr., 153 (1991), 333-348.
doi: 10.1002/mana.19911530129.![]() ![]() ![]() |
[2] |
W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$, Proc. Nat. Acad. Sci. U.S.A., 89 (1992), 4816-4819.
doi: 10.1073/pnas.89.11.4816.![]() ![]() ![]() |
[3] |
F. Besau and E. M. Werner, The spherical convex floating body, Adv. Math., 301 (2016), 867-901.
doi: 10.1016/j.aim.2016.07.001.![]() ![]() ![]() |
[4] |
C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30 (1975), 207-216.
doi: 10.1007/BF01425510.![]() ![]() ![]() |
[5] |
J. Bourgain, H. Brézis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations, IOS, Amsterdam, (2001), 439–455.
![]() ![]() |
[6] |
J. Bourgain, H. Brézis and P. Mironescu, Limiting embedding theorems for $W^{s, p}$ when $s\uparrow1$ and applications, J. Anal. Math., 87 (2002), 77-101.
doi: 10.1007/BF02868470.![]() ![]() ![]() |
[7] |
C. Bucur, L. Lombardini and E. Valdinoci, Complete stickiness of nonlocal minimal surfaces for small values of the fractional parameter, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 655-703.
doi: 10.1016/j.anihpc.2018.08.003.![]() ![]() ![]() |
[8] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331.![]() ![]() ![]() |
[9] |
J. Dávila, On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations, 15 (2002), 519-527.
doi: 10.1007/s005260100135.![]() ![]() ![]() |
[10] |
E. De Giorgi, Definizione ed espressione analitica del perimetro di un insieme, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 14 (1953), 390-393.
![]() ![]() |
[11] |
S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the $s$-perimeter as $s\searrow0$, Discrete Contin. Dyn. Syst., 33 (2013), 2777-2790.
doi: 10.3934/dcds.2013.33.2777.![]() ![]() ![]() |
[12] |
R. L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407-3430.
doi: 10.1016/j.jfa.2008.05.015.![]() ![]() ![]() |
[13] |
S. Glasauer, Integralgeometrie Konvexer Körper im Sphärischen Raum, PhD Thesis, Universiät Freiburg, 1995.
![]() |
[14] |
D. Hug and C. Thäle, Splitting tessellations in spherical spaces, Electron. J. Probab., 24 (2019), Paper No. 24, 60 pp.
doi: 10.1214/19-EJP267.![]() ![]() ![]() |
[15] |
A. Kreuml, The anisotropic fractional isoperimetric problem with respect to unconditional unit balls, Commun. Pure Appl. Anal., 20 (2021), 783-799.
doi: 10.3934/cpaa.2020290.![]() ![]() ![]() |
[16] |
A. Kreuml and O. Mordhorst, Fractional Sobolev norms and BV functions on manifolds, Nonlinear Anal., 187 (2019), 450-466.
doi: 10.1016/j.na.2019.06.014.![]() ![]() ![]() |
[17] |
M. Ludwig, Anisotropic fractional perimeters, J. Differential Geom., 96 (2014), 77–93, URL http://projecteuclid.org/euclid.jdg/1391192693.
![]() ![]() |
[18] |
M. Ludwig, Anisotropic fractional Sobolev norms, Adv. Math., 252 (2014), 150-157.
doi: 10.1016/j.aim.2013.10.024.![]() ![]() ![]() |
[19] |
E. Lutwak, The Brunn-Minkowski-Firey theory. Ⅱ. Affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
doi: 10.1006/aima.1996.0022.![]() ![]() ![]() |
[20] |
E. Lutwak, D. Yang and G. Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom., 56 (2000), 111–132, URL http://projecteuclid.org/euclid.jdg/1090347527.
![]() ![]() |
[21] |
E. Lutwak, D. Yang and G. Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom., 62 (2002), 17–38, URL http://projecteuclid.org/euclid.jdg/1090425527.
![]() ![]() |
[22] |
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2012, URL https://books.google.at/books?id=Qc2LO2PD10gC.
doi: 10.1017/CBO9781139108133.![]() ![]() ![]() |
[23] |
V. Maz'ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195 (2002), 230-238.
doi: 10.1006/jfan.2002.3955.![]() ![]() ![]() |
[24] |
R. Schneider and W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-78859-1.![]() ![]() ![]() |
[25] |
V. N. Sudakov and B. S. Cirel'son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41 (1974), 14–24,165, Problems in the theory of probability distributions, Ⅱ.
![]() ![]() |
[26] |
E. Werner, The $p$-affine surface area and geometric interpretations, in IV International Conference in "Stochastic Geometry, Convex Bodies, Empirical Measures & Applications to Engineering Science", Vol. II (eds. R. Schneider and M. I. Stoka), Circ. Mat. Palermo, 70 (2002), 367–382.
![]() ![]() |
[27] |
E. Werner and D. Ye, New $L_p$ affine isoperimetric inequalities, Adv. Math., 218 (2008), 762-780.
doi: 10.1016/j.aim.2008.02.002.![]() ![]() ![]() |
[28] |
J. A. Wieacker, Translative Poincaré formulae for Hausdorff rectifiable sets, Geom. Dedicata, 16 (1984), 231-248.
doi: 10.1007/BF00146833.![]() ![]() ![]() |