doi: 10.3934/dcds.2021086

Dynamics of particles on a curve with pairwise hyper-singular repulsion

1. 

Department of Mathematics, Vanderbilt University, Nashville TN 37240, USA

2. 

Department of Mathematics, Center for Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park MD 20742, USA

3. 

Department of Mathematics and Institute for Physical Science & Technology, University of Maryland, College Park MD 20742, USA

* Corresponding author: Eitan Tadmor

Received  October 2020 Revised  April 2021 Published  May 2021

Fund Project: DH and ES acknowledge support, in part, by the U. S. National Science Foundation under grant DMS-1516400. RS and ET were supported by NSF grant DMS16-13911 and ONR grant N00014-1812465. ES and ET also thank the hospitality of the Laboratoire Jacques Louis Lions in Sorbonne Université during spring 2019, with support by the European Research Council advanced grant 338977 BREAD (ES) and by ERC Grant 740623 under the EU Horizon 2020 (ET)

We investigate the large time behavior of $ N $ particles restricted to a smooth closed curve in $ \mathbb{R}^d $ and subject to a gradient flow with respect to Euclidean hyper-singular repulsive Riesz $ s $-energy with $ s>1. $ We show that regardless of their initial positions, for all $ N $ and time $ t $ large, their normalized Riesz $ s $-energy will be close to the $ N $-point minimal possible energy. Furthermore, the distribution of such particles will be close to uniform with respect to arclength measure along the curve.

Citation: Douglas Hardin, Edward B. Saff, Ruiwen Shu, Eitan Tadmor. Dynamics of particles on a curve with pairwise hyper-singular repulsion. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021086
References:
[1]

S. V. Borodachov, Lower order terms of the discrete minimal Riesz energy on smooth closed curves, Canad. J. Math., 64 (2012), 24-43.  doi: 10.4153/CJM-2011-038-5.  Google Scholar

[2]

S. V. Borodachov, D. P. Hardin and E. B. Saff, Discrete energy on rectifiable sets, Springer Monographs in Mathematics, Springer, New York, [2019], 2019, xviii+666 pp. doi: 10.1007/978-0-387-84808-2.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290. Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-6568-7.  Google Scholar

[4]

D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc., 51 (2004), 1186-1194.   Google Scholar

[5]

A. Martínez-FinkelshteinV. MaymeskulE. A. Rakhmanov and E. B. Saff, Asymptotics for minimal discrete Riesz energy on curves in $\mathbb{R}^d$, Canad. J. Math., 56 (2004), 529-552.  doi: 10.4153/CJM-2004-024-1.  Google Scholar

[6]

K. Oelschläger, Large systems of interacting particles and the porous medium equation, J. Diff. Eq., 88 (1990), 294–346. doi: 10.1016/0022-0396(90)90101-T.  Google Scholar

[7]

S. Serfaty (appendix with Mitia Duerinckx), Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887–2935. doi: 10.1215/00127094-2020-0019.  Google Scholar

show all references

References:
[1]

S. V. Borodachov, Lower order terms of the discrete minimal Riesz energy on smooth closed curves, Canad. J. Math., 64 (2012), 24-43.  doi: 10.4153/CJM-2011-038-5.  Google Scholar

[2]

S. V. Borodachov, D. P. Hardin and E. B. Saff, Discrete energy on rectifiable sets, Springer Monographs in Mathematics, Springer, New York, [2019], 2019, xviii+666 pp. doi: 10.1007/978-0-387-84808-2.  Google Scholar

[3]

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 290. Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-6568-7.  Google Scholar

[4]

D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc., 51 (2004), 1186-1194.   Google Scholar

[5]

A. Martínez-FinkelshteinV. MaymeskulE. A. Rakhmanov and E. B. Saff, Asymptotics for minimal discrete Riesz energy on curves in $\mathbb{R}^d$, Canad. J. Math., 56 (2004), 529-552.  doi: 10.4153/CJM-2004-024-1.  Google Scholar

[6]

K. Oelschläger, Large systems of interacting particles and the porous medium equation, J. Diff. Eq., 88 (1990), 294–346. doi: 10.1016/0022-0396(90)90101-T.  Google Scholar

[7]

S. Serfaty (appendix with Mitia Duerinckx), Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887–2935. doi: 10.1215/00127094-2020-0019.  Google Scholar

Figure 1.  The number $ r_0 $ in Lemma 4.1 is the range for which $ {{\bf x}}(z) $ can be approximated by a local Taylor expansion near $ {{\bf x}}(y) $ for any fixed $ y $
Figure 2.  Lemmas 5.1 and 5.2. Left: the summand in the last term of (5.2). The two terms representing the forces from $ z_j $ acting on $ z_{i_M} $ (red) and $ z_{i_M+1} $ (blue), which decreases/increases $ \delta $ respectively. Right: a local uniform distribution like $ \{\tilde{z}_j\} $ makes $ \frac{ \,\mathrm{d}}{ \,\mathrm{d}{t}}\delta \approx 0 $ up to errors from curvature. A possible defect will release the total pushing force on $ \delta $, make $ \frac{ \,\mathrm{d}}{ \,\mathrm{d}{t}}\delta $ positive, and thus violate (5.11)
Figure 3.  Proof of Theorem 2.1. Left: when (5.11) does not hold, $ \delta $ is increasing very fast (i.e., $ \rho_M $ is decreasing very fast). Right: when (5.11) holds, there is almost uniform distribution near $ z_{i_M} $ (red parts) with average density near $ \rho_M $, and the total repulsion at $ z_{i_M} $ is strong (see (5.12)). The rest part has average density at most $ 1+\epsilon $, and Lemma 3.1 applies to give a weak total repulsion cut. The strong/weak total repulsion ((1)-(2) good contribution, $ I_1 $, and (3)-(4) bad contribution, $ I_2 $, see (6.9)) forces the green part to rotate. The parameter $ r_1 $ is to guarantee that (3) or (4) cannot be too short, so that the possible bad contribution from (1)-(4) or (2)-(3) (the term $ I_3 $) can be neglected
[1]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[2]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[3]

Ansgar Jüngel, Ingrid Violet. Mixed entropy estimates for the porous-medium equation with convection. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 783-796. doi: 10.3934/dcdsb.2009.12.783

[4]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[5]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[6]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[7]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[8]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[9]

Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure & Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649

[10]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[11]

Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223

[12]

Ansgar Jüngel, Stefan Schuchnigg. A discrete Bakry-Emery method and its application to the porous-medium equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5541-5560. doi: 10.3934/dcds.2017241

[13]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[14]

Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665

[15]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[16]

Guofu Lu. Nonexistence and short time asymptotic behavior of source-type solution for porous medium equation with convection in one-dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1567-1586. doi: 10.3934/dcdsb.2016011

[17]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[18]

Nikolaos Roidos, Yuanzhen Shao. Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021026

[19]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[20]

Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (43)
  • Cited by (0)

[Back to Top]