\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hearing the shape of right triangle billiard tables

  • * Corresponding author: Jiazhong Yang

    * Corresponding author: Jiazhong Yang

The paper is supported by NSFC-12071006

Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • In this paper, we give a positive answer to the problem that whether one can identify the shape of a right triangle billiard table by a single bounce sequence. Moreover, a convenient method to calculate the shape of polygons is given in this paper, too.

    Mathematics Subject Classification: Primary: 37C83; Secondary: 70F35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.1.  After a reflection, $ P_{n} $ becomes $ P_{n+1} $ in Case ($ i $) and $ P_{n-1} $ in Case ($ ii $)

    Figure 2.2.  From $ B(\gamma^+) = ({r}, {b}, {r}, {g}, {b}, {r}, {b}, {r}, {b}, {g}, {r}, \cdots) $ to get the return sequence $ R(\gamma^+) = (1, 2, 1, 2, \cdots) $ and then to the get the level sequence $ L(\gamma^+) = (0, 1, 0, -1, 0, \cdots) $

    Figure 3.1.  The visual diagram of $ \theta_{n} $, $ \theta_{n+1} $ and $ \theta_{n+2} $

    Figure 3.2.  Cases ($ i $) and ($ ii $) correspond to $ LM_n = ({r}, {g}, {r}) $ and $ \theta_{n}\in(\alpha, \pi-\alpha) $; Cases ($ iii $) and ($ iv $) correspond to $ LM_n = ({r}, {b}, {r}) $ and $ \theta_{n}\in[0, \alpha)\bigcup\, (\pi-\alpha, \pi] = (-\alpha, \alpha)\, (\bmod\, \pi) $

    Figure 3.3.  In Case ($ i $), $ \theta_{n_0} = \pi-\alpha $. In Case ($ ii $), $ \theta_{n_0} = \alpha $

    Figure 3.4.   

    Figure 3.5.   

    Figure 3.6.  The left-hand part is a right triangle billiard table $ Rt $ and a periodic orbit: $ p_{0} $ $ \longrightarrow $ $ p_{1} $ $ \longrightarrow $ $ p_{2} $ $ \longrightarrow $ $ \cdots $ $ \longrightarrow p_{9} $ $ \longrightarrow $ $ p_{10} $ $ \longrightarrow $ $ \cdots $ in $ Rt $. The right-hand part is the unfolding floors of the corresponding rhombus of $ Rt $ along the periodic orbit

    Figure 3.7.  The left-hand part is a right triangle billiard table $ Rt $ and a periodic orbit: $ p_{0} $ $ \longrightarrow $ $ p_{1} $ $ \longrightarrow $ $ p_{2} $ $ \longrightarrow $ $ \cdots $ $ \longrightarrow $ $ p_{6} $ $ \longrightarrow $ $ \cdots $ in $ Rt $. The right-hand part is the unfolding floors of the corresponding rhombus of $ Rt $ along the periodic orbit

  • [1] J. Bobok and S. Troubetzkoy, Does a billiard orbit determine its (polygonal) table?, Fundamenta Mathematicae, 212 (2011), 129-144.  doi: 10.4064/fm212-2-2.
    [2] J. Bobok and S. Troubetzkoy, Code and order in polygonal billiards, Topology and its Applications, 159 (2012), 236-247.  doi: 10.1016/j.topol.2011.09.007.
    [3] A. Calderon, S. Coles, D. Davis, J. Lanier and A. Oliveira, How to hear the shape of a billiard table, preprint, arXiv: 1806.09644, 2018.
    [4] M. Duchin, V. Erlandsson, C. J. Leininger and C. Sadanand, You can hear the shape of a billiard table: Symbolic dynamics and rigidity for flat surfaces, preprint, arXiv: 1804.05690, 2019.
    [5] G. Galperin, Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys., 91 (1983), 187-211.  doi: 10.1007/BF01211158.
    [6] G. GalperinT. Krüger and S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., 169 (1995), 463-473.  doi: 10.1007/BF02099308.
    [7] P. Hooper, Periodic billiard paths in right triangles are unstable, Geom. Dedicata, 125 (2007), 39-46.  doi: 10.1007/s10711-007-9129-9.
    [8] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1-23.  doi: 10.1080/00029890.1966.11970915.
    [9] A. Katok and B. Hasselblatt, Flows on surface and related dynmical systems, in Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, (1995), 470–479.
    [10] H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, Elsevier, 1 (2002), 1015–1089. doi: 10.1016/S1874-575X(02)80015-7.
    [11] Y. Shen, Hearing the Shape of Some Polygon Billiard Tables, Ph.d. Thesis, Peking University, 2021.
    [12] S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142pp.
    [13] G. W. Tokarsky, Galperin's triangle example, Comm. Math. Phys., 335 (2015), 1211-1213.  doi: 10.1007/s00220-015-2336-6.
    [14] S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regular and Chaotic Dynamics, 9 (2004), 1-12.  doi: 10.1070/RD2004v009n01ABEH000259.
    [15] S. Troubetzkoy, Periodic billiard orbits in right triangles, Annales de l'institut Fourier, 55 (2005), 29-46.  doi: 10.5802/aif.2088.
  • 加载中
Open Access Under a Creative Commons license

Figures(9)

SHARE

Article Metrics

HTML views(1759) PDF downloads(354) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return