Article Contents
Article Contents

# Hearing the shape of right triangle billiard tables

• * Corresponding author: Jiazhong Yang

The paper is supported by NSFC-12071006

• In this paper, we give a positive answer to the problem that whether one can identify the shape of a right triangle billiard table by a single bounce sequence. Moreover, a convenient method to calculate the shape of polygons is given in this paper, too.

Mathematics Subject Classification: Primary: 37C83; Secondary: 70F35.

 Citation:

• Figure 2.1.  After a reflection, $P_{n}$ becomes $P_{n+1}$ in Case ($i$) and $P_{n-1}$ in Case ($ii$)

Figure 2.2.  From $B(\gamma^+) = ({r}, {b}, {r}, {g}, {b}, {r}, {b}, {r}, {b}, {g}, {r}, \cdots)$ to get the return sequence $R(\gamma^+) = (1, 2, 1, 2, \cdots)$ and then to the get the level sequence $L(\gamma^+) = (0, 1, 0, -1, 0, \cdots)$

Figure 3.1.  The visual diagram of $\theta_{n}$, $\theta_{n+1}$ and $\theta_{n+2}$

Figure 3.2.  Cases ($i$) and ($ii$) correspond to $LM_n = ({r}, {g}, {r})$ and $\theta_{n}\in(\alpha, \pi-\alpha)$; Cases ($iii$) and ($iv$) correspond to $LM_n = ({r}, {b}, {r})$ and $\theta_{n}\in[0, \alpha)\bigcup\, (\pi-\alpha, \pi] = (-\alpha, \alpha)\, (\bmod\, \pi)$

Figure 3.3.  In Case ($i$), $\theta_{n_0} = \pi-\alpha$. In Case ($ii$), $\theta_{n_0} = \alpha$

Figure 3.4.

Figure 3.5.

Figure 3.6.  The left-hand part is a right triangle billiard table $Rt$ and a periodic orbit: $p_{0}$ $\longrightarrow$ $p_{1}$ $\longrightarrow$ $p_{2}$ $\longrightarrow$ $\cdots$ $\longrightarrow p_{9}$ $\longrightarrow$ $p_{10}$ $\longrightarrow$ $\cdots$ in $Rt$. The right-hand part is the unfolding floors of the corresponding rhombus of $Rt$ along the periodic orbit

Figure 3.7.  The left-hand part is a right triangle billiard table $Rt$ and a periodic orbit: $p_{0}$ $\longrightarrow$ $p_{1}$ $\longrightarrow$ $p_{2}$ $\longrightarrow$ $\cdots$ $\longrightarrow$ $p_{6}$ $\longrightarrow$ $\cdots$ in $Rt$. The right-hand part is the unfolding floors of the corresponding rhombus of $Rt$ along the periodic orbit

•  [1] J. Bobok and S. Troubetzkoy, Does a billiard orbit determine its (polygonal) table?, Fundamenta Mathematicae, 212 (2011), 129-144.  doi: 10.4064/fm212-2-2. [2] J. Bobok and S. Troubetzkoy, Code and order in polygonal billiards, Topology and its Applications, 159 (2012), 236-247.  doi: 10.1016/j.topol.2011.09.007. [3] A. Calderon, S. Coles, D. Davis, J. Lanier and A. Oliveira, How to hear the shape of a billiard table, preprint, arXiv: 1806.09644, 2018. [4] M. Duchin, V. Erlandsson, C. J. Leininger and C. Sadanand, You can hear the shape of a billiard table: Symbolic dynamics and rigidity for flat surfaces, preprint, arXiv: 1804.05690, 2019. [5] G. Galperin, Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys., 91 (1983), 187-211.  doi: 10.1007/BF01211158. [6] G. Galperin, T. Krüger and S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys., 169 (1995), 463-473.  doi: 10.1007/BF02099308. [7] P. Hooper, Periodic billiard paths in right triangles are unstable, Geom. Dedicata, 125 (2007), 39-46.  doi: 10.1007/s10711-007-9129-9. [8] M. Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1-23.  doi: 10.1080/00029890.1966.11970915. [9] A. Katok and B. Hasselblatt, Flows on surface and related dynmical systems, in Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, (1995), 470–479. [10] H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems, Elsevier, 1 (2002), 1015–1089. doi: 10.1016/S1874-575X(02)80015-7. [11] Y. Shen, Hearing the Shape of Some Polygon Billiard Tables, Ph.d. Thesis, Peking University, 2021. [12] S. Tabachnikov, Billiards, Panor. Synth., 1 (1995), vi+142pp. [13] G. W. Tokarsky, Galperin's triangle example, Comm. Math. Phys., 335 (2015), 1211-1213.  doi: 10.1007/s00220-015-2336-6. [14] S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regular and Chaotic Dynamics, 9 (2004), 1-12.  doi: 10.1070/RD2004v009n01ABEH000259. [15] S. Troubetzkoy, Periodic billiard orbits in right triangles, Annales de l'institut Fourier, 55 (2005), 29-46.  doi: 10.5802/aif.2088.
Open Access Under a Creative Commons license

Figures(9)