In this paper, we study the following nonlinear magnetic Kirchhoff equation with critical growth
$ \begin{align*} \left\{ \begin{aligned} &-\Big(a\epsilon^{2}+b\epsilon\, [u]_{A/\epsilon}^{2}\Big)\Delta_{A/\epsilon} u+V(x)u = f(|u|^{2})u+\vert u\vert^{4}u \quad \hbox{in }\mathbb{R}^3, \\ &u\in H^{1}(\mathbb{R}^{3}, \mathbb{C}), \end{aligned} \right. \end{align*} $
where $ \epsilon>0 $ is a parameter, $ a, b>0 $ are constants, $ V:\mathbb{R}^{3}\rightarrow \mathbb{R} $ and $ A: \mathbb{R}^{3}\rightarrow \mathbb{R}^{3} $ are continuous potentials, and $ f: \mathbb{R}\rightarrow \mathbb{R} $ is a nonlinear term with subcritical growth. Under a local assumption on the potential $ V $, combining variational methods, penalization techniques and the Ljusternik-Schnirelmann theory, we establish multiplicity and concentration properties of solutions to the above problem for $ \varepsilon $ small. A feature of this paper is that the function $ f $ is assumed to be only continuous, which allows to consider larger classes of nonlinearities in the reaction.
Citation: |
[1] |
C. O. Alves, G. M. Figueiredo and M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differential Equations, 36 (2011), 1565-1586.
doi: 10.1080/03605302.2011.593013.![]() ![]() ![]() |
[2] |
C. O. Alves and G. M. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 82 (2014), 389-405.
doi: 10.1007/s00032-014-0225-7.![]() ![]() ![]() |
[3] |
C. O. Alves, G. M. Figueiredo and M. Yang, Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field, Asymptot. Anal., 96 (2016), 135-159.
doi: 10.3233/ASY-151337.![]() ![]() ![]() |
[4] |
G. Arioli and A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Rational Mech. Anal., 170 (2003), 277-295.
doi: 10.1007/s00205-003-0274-5.![]() ![]() ![]() |
[5] |
P. d'Avenia and C. Ji, Multiplicity and concentration results for a magnetic Schrödinger equation with exponential critical growth in $\mathbb{R}^{2}$, Int. Math. Res. Not., (2020), doi: 10.1093/imrn/rnaa074
doi: 10.1093/imrn/rnaa074.![]() ![]() |
[6] |
M. del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations, 4 (1996), 121-137.
doi: 10.1007/BF01189950.![]() ![]() ![]() |
[7] |
M. J. Esteban and P.-L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in "Partial differential equations and the calculus of variations", Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, 1 (1989), 401–449.
![]() ![]() |
[8] |
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.
doi: 10.1016/0022-1236(86)90096-0.![]() ![]() ![]() |
[9] |
X.M. He and W.M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3}$, J. Differential Equations, 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035.![]() ![]() ![]() |
[10] |
X. M. He and W. M. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, 55 (2016), Art 91, 39 pp.
doi: 10.1007/s00526-016-1045-0.![]() ![]() ![]() |
[11] |
X. M. He and W. M. Zou, Multiplicity and concentrating solutions for a class of fractional Kirchhoff equation, Manuscripta Math., 158 (2018), 159-203.
doi: 10.1007/s00229-018-1017-0.![]() ![]() ![]() |
[12] |
C. Ji, F. Fang and B. L. Zhang, A multiplicity result for asymptotically linear Kirchhoff equations, Adv. Nonlinear Anal., 8 (2019), 267-277.
doi: 10.1515/anona-2016-0240.![]() ![]() ![]() |
[13] |
C. Ji and V. D. Rădulescu, Multi-bump solutions for the nonlinear magnetic Choquard-Schrödinger equation with deepening potential well, preprint.
![]() |
[14] |
C. Ji and V. D. Rădulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in $\mathbb{R}^{2}$, Manuscripta Math., 164 (2021), 509-542.
doi: 10.1007/s00229-020-01195-1.![]() ![]() ![]() |
[15] |
C. Ji and V. D. Rădulescu, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, Calc. Var. Partial Differential Equations, 59 (2020), Art 115, 28 pp.
doi: 10.1007/s00526-020-01772-y.![]() ![]() ![]() |
[16] |
C. Ji and V. D. Rădulescu, Concentration phenomena for nonlinear magnetic Schrödinger equations with critical growth, Israel J. Math., 241 (2021), 465-500.
doi: 10.1007/s11856-021-2105-5.![]() ![]() ![]() |
[17] |
C. Ji and V. D. Rădulescu, Multiplicity and concentration of solutions for Kirchhoff equations with magnetic field, Adv. Nonlinear Stud., (2021), in the press.
doi: 10.1515/ans-2021-2130.![]() ![]() |
[18] |
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
![]() |
[19] |
E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathematical Society, Providence, 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
[20] |
X. Mingqi, V. D. Rădulescu and B. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math., 21 (2019), 1850004, 36 pp.
doi: 10.1142/s0219199718500049.![]() ![]() ![]() |
[21] |
Y. G. Oh, Existence of semi-classical bound state of nonlinear Schrödinger equations with potential on the class of $(V)_{a}$, Comm. Partial Differential Equations, 13 (1998), 1499-1519.
doi: 10.1080/03605308808820585.![]() ![]() ![]() |
[22] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223-253.
doi: 10.1007/BF02161413.![]() ![]() ![]() |
[23] |
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006.![]() ![]() ![]() |
[24] |
P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
[25] |
A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
[26] |
A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010, 597-632.
![]() ![]() |
[27] |
X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.
doi: 10.1007/BF02096642.![]() ![]() ![]() |
[28] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[29] |
H. Zhang and F. B. Zhang, Ground states for the nonlinear Kirchhoff type problems, J. Math. Anal. Appl., 423 (2015), 1671-1692.
doi: 10.1016/j.jmaa.2014.10.062.![]() ![]() ![]() |
[30] |
J. Zhang and W. M. Zou, Multiplicity and concentration behavior of solutions to the critical Kirchhoff-type problem, Z. Angew. Math. Phys., 68 (2017), Paper No. 57, 27 pp.
doi: 10.1007/s00033-017-0803-y.![]() ![]() ![]() |
[31] |
Y. Zhang, X. Tang and V. D. Rădulescu, Small perturbations for nonlinear Schrödinger equations with magnetic potential, Milan J. Math., 88 (2020), 479-506.
doi: 10.1007/s00032-020-00322-7.![]() ![]() ![]() |