December  2021, 41(12): 5609-5632. doi: 10.3934/dcds.2021090

Well-posedness of the two-phase flow problem in incompressible MHD

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Hui Li

Received  September 2020 Revised  April 2021 Published  December 2021 Early access  June 2021

In this paper, we study the two phase flow problem in the ideal incompressible magnetohydrodynamics. We propose a Syrovatskij type stability condition, and prove the local well-posedness of the two phase flow problem with initial data satisfies such condition. This result shows that the magnetic field has a stabilizing effect on Kelvin-Helmholtz instability even the fluids on each side of the free interface have different densities.

Citation: Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090
References:
[1]

W. I. Axford, Note on a problem of magnetohydrodynamic stability, Canad. J. Phys., 40 (1962), 654-655.  doi: 10.1139/p62-064.  Google Scholar

[2]

T. AlazardN. Burq and C. Zuily, On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71-163.  doi: 10.1007/s00222-014-0498-z.  Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Comm. Math. Sci., 5 (2007), 391-430.  doi: 10.4310/CMS.2007.v5.n2.a9.  Google Scholar

[4]

C. ChengD. Coutand and S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., 39 (2007), 742-800.  doi: 10.1137/060656085.  Google Scholar

[5]

V. CarboneG. Einaudi and P. Veltri, Effects of turbulence development in solar surges, Solar. Phys., 111 (1987), 31-44.  doi: 10.1007/978-94-009-3999-8_4.  Google Scholar

[6]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.  doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q.  Google Scholar

[7]

J.-F. CoulombelA. MorandoP. Secchi and P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets, Comm. Math. Phys., 311 (2012), 247-275.  doi: 10.1007/s00220-011-1340-8.  Google Scholar

[8]

S. Friedlander and D. Serre, Handbook of Mathematical Fluid Dynamics, North Holland/Elsevier, 2004.  Google Scholar

[9]

F. JiangS. Jiang and Y. Wang, On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Comm. Partial Differential Equations, 39 (2014), 399-438.  doi: 10.1080/03605302.2013.863913.  Google Scholar

[10]

A. L. La Belle-HamerZ. F. Fu and L. C. Lee, A mechanism for patchy reconnection at the dayside magnetopause, Geophysical Research Letters, 15 (1988), 152-155.  doi: 10.1029/GL015i002p00152.  Google Scholar

[11]

H. LiW. Wang and Z. Zhang, Well-posedness of the free boundary problem in incompressible elastodynamics, J. Differential Equations, 267 (2019), 6604-6643.  doi: 10.1016/j.jde.2019.07.001.  Google Scholar

[12] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.   Google Scholar
[13]

G. V. Miloshevsky and A. Hassanein, Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact, Nuclear Fusion, 50 (2010), 115005. doi: 10.1088/0029-5515/50/11/115005.  Google Scholar

[14]

A. MorandoY. Trakhinin and P. Trebeschi, Stability of incompressible current-vortex sheets, J. Math. Anal. Appl., 347 (2008), 502-520.  doi: 10.1016/j.jmaa.2008.06.002.  Google Scholar

[15]

L. Ofman, X. L. Chen, P. J. Morrison and et al., Resistive tearing mode instability with shear flow and viscosity, Physics of Fluids B: Plasma Physics, 3 (1991), 1364. Google Scholar

[16]

S. I. Syrovatskij, The stability of tangential discontinuities in a magnetohydrodynamic medium, Z. Eksperim. Teoret. Fiz., 24 (1953), 622-629.   Google Scholar

[17]

Y. SunW. Wang and Z. Zhang, Nonlinear stability of the current-vortex sheet to the incompressible MHD equations, Comm. Pure Appl. Math., 71 (2018), 356-403.  doi: 10.1002/cpa.21710.  Google Scholar

[18]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., 61 (2008), 698-744.  doi: 10.1002/cpa.20213.  Google Scholar

[19]

J. Shatah and C. Zeng, A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.  doi: 10.1002/cpa.20241.  Google Scholar

[20]

Y. Trakhinin, On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem, Math. Methods Appl. Sci., 28 (2005), 917-945.  doi: 10.1002/mma.600.  Google Scholar

[21]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.  doi: 10.1007/s002220050177.  Google Scholar

[22]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.  doi: 10.1090/S0894-0347-99-00290-8.  Google Scholar

[23]

H. Yang, Z. Xu, E. K. Lim, et al., Observation of the Kelvin-Helmholtz Instability in a Solar Prominence, The Astrophysical Journal, 857 (2018), 115. doi: 10.3847/1538-4357/aab789.  Google Scholar

[24]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.  doi: 10.1002/cpa.20226.  Google Scholar

show all references

References:
[1]

W. I. Axford, Note on a problem of magnetohydrodynamic stability, Canad. J. Phys., 40 (1962), 654-655.  doi: 10.1139/p62-064.  Google Scholar

[2]

T. AlazardN. Burq and C. Zuily, On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71-163.  doi: 10.1007/s00222-014-0498-z.  Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Comm. Math. Sci., 5 (2007), 391-430.  doi: 10.4310/CMS.2007.v5.n2.a9.  Google Scholar

[4]

C. ChengD. Coutand and S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., 39 (2007), 742-800.  doi: 10.1137/060656085.  Google Scholar

[5]

V. CarboneG. Einaudi and P. Veltri, Effects of turbulence development in solar surges, Solar. Phys., 111 (1987), 31-44.  doi: 10.1007/978-94-009-3999-8_4.  Google Scholar

[6]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.  doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q.  Google Scholar

[7]

J.-F. CoulombelA. MorandoP. Secchi and P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets, Comm. Math. Phys., 311 (2012), 247-275.  doi: 10.1007/s00220-011-1340-8.  Google Scholar

[8]

S. Friedlander and D. Serre, Handbook of Mathematical Fluid Dynamics, North Holland/Elsevier, 2004.  Google Scholar

[9]

F. JiangS. Jiang and Y. Wang, On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Comm. Partial Differential Equations, 39 (2014), 399-438.  doi: 10.1080/03605302.2013.863913.  Google Scholar

[10]

A. L. La Belle-HamerZ. F. Fu and L. C. Lee, A mechanism for patchy reconnection at the dayside magnetopause, Geophysical Research Letters, 15 (1988), 152-155.  doi: 10.1029/GL015i002p00152.  Google Scholar

[11]

H. LiW. Wang and Z. Zhang, Well-posedness of the free boundary problem in incompressible elastodynamics, J. Differential Equations, 267 (2019), 6604-6643.  doi: 10.1016/j.jde.2019.07.001.  Google Scholar

[12] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.   Google Scholar
[13]

G. V. Miloshevsky and A. Hassanein, Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact, Nuclear Fusion, 50 (2010), 115005. doi: 10.1088/0029-5515/50/11/115005.  Google Scholar

[14]

A. MorandoY. Trakhinin and P. Trebeschi, Stability of incompressible current-vortex sheets, J. Math. Anal. Appl., 347 (2008), 502-520.  doi: 10.1016/j.jmaa.2008.06.002.  Google Scholar

[15]

L. Ofman, X. L. Chen, P. J. Morrison and et al., Resistive tearing mode instability with shear flow and viscosity, Physics of Fluids B: Plasma Physics, 3 (1991), 1364. Google Scholar

[16]

S. I. Syrovatskij, The stability of tangential discontinuities in a magnetohydrodynamic medium, Z. Eksperim. Teoret. Fiz., 24 (1953), 622-629.   Google Scholar

[17]

Y. SunW. Wang and Z. Zhang, Nonlinear stability of the current-vortex sheet to the incompressible MHD equations, Comm. Pure Appl. Math., 71 (2018), 356-403.  doi: 10.1002/cpa.21710.  Google Scholar

[18]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., 61 (2008), 698-744.  doi: 10.1002/cpa.20213.  Google Scholar

[19]

J. Shatah and C. Zeng, A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.  doi: 10.1002/cpa.20241.  Google Scholar

[20]

Y. Trakhinin, On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem, Math. Methods Appl. Sci., 28 (2005), 917-945.  doi: 10.1002/mma.600.  Google Scholar

[21]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.  doi: 10.1007/s002220050177.  Google Scholar

[22]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.  doi: 10.1090/S0894-0347-99-00290-8.  Google Scholar

[23]

H. Yang, Z. Xu, E. K. Lim, et al., Observation of the Kelvin-Helmholtz Instability in a Solar Prominence, The Astrophysical Journal, 857 (2018), 115. doi: 10.3847/1538-4357/aab789.  Google Scholar

[24]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.  doi: 10.1002/cpa.20226.  Google Scholar

[1]

Joshua Du. Kelvin-Helmholtz instability waves of supersonic multiple jets. Conference Publications, 2003, 2003 (Special) : 234-245. doi: 10.3934/proc.2003.2003.234

[2]

Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete & Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146

[3]

Theodore Tachim Medjo. A two-phase flow model with delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137

[4]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

[5]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198

[6]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

[7]

Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239

[8]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[9]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[10]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[11]

Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157

[12]

Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure & Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011

[13]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[14]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[15]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[16]

Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016

[17]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[18]

Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037

[19]

Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021151

[20]

Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088

2020 Impact Factor: 1.392

Article outline

[Back to Top]