In this paper, we explore the period tripling and period quintupling renormalizations below $ C^2 $ class of unimodal maps. We show that for a given proper scaling data there exists a renormalization fixed point on the space of piece-wise affine maps which are infinitely renormalizable. Furthermore, we show that this renormalization fixed point is extended to a $ C^{1+Lip} $ unimodal map, considering the period tripling and period quintupling combinatorics. Moreover, we show that there exists a continuum of fixed points of renormalizations by considering a small variation on the scaling data. Finally, this leads to the fact that the tripling and quintupling renormalizations acting on the space of $ C^{1+Lip} $ unimodal maps have unbounded topological entropy.
Citation: |
[1] |
G. Birkhoff, M. Martens and C. Tresser, On the scaling structure for period doubling, Astérisque, 286 (2003), 167-186.
![]() ![]() |
[2] |
V. V. M. S. Chandramouli, M. Martens, W. D. Melo and C. P. Tresser, Chaotic period doubling, Ergodic Theory and Dynamical Systems, 29 (2009), 381-418.
doi: 10.1017/S0143385708080371.![]() ![]() ![]() |
[3] |
P. Coullet and C. Tresser, Itération d'endomorphisms et groupe de renormalisation, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), 577-580.
![]() ![]() |
[4] |
A. M. Davie, Period doubling for $C^{2+\epsilon}$ mappings, Commun. Math. Phys., 176 (1996), 261-272.
doi: 10.1007/BF02099549.![]() ![]() ![]() |
[5] |
E. D. Faria, W. D. Melo and A. Pinto, Global hyperbolicity of renormalization for $C^r$ unimodal mappings, Ann. of Math., 164 (2006), 731-824.
doi: 10.4007/annals.2006.164.731.![]() ![]() ![]() |
[6] |
M. J. Feigenbaum, Quantitative universality for a class of non-linear transformations, J. Stat. Phys., 19 (1978), 25-52.
doi: 10.1007/BF01020332.![]() ![]() ![]() |
[7] |
M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Stat. Phys., 21 (1979), 669-706.
doi: 10.1007/BF01107909.![]() ![]() ![]() |
[8] |
O. Lanford-III, A computer assisted proof of the Feigenbaum conjecture, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.
doi: 10.1090/S0273-0979-1982-15008-X.![]() ![]() ![]() |
[9] |
M. Lyubich, Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture, Ann. of Math., 149 (1999), 319-420.
doi: 10.2307/120968.![]() ![]() ![]() |
[10] |
W. D. Melo and S. V. Strien, One-Dimensional Dynamics, 1$^{st}$ edition, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1.![]() ![]() ![]() |
[11] |
C. Tresser, Fine Structure of Universal Cantor Sets, in Instabilities and Nonequilibrium Structures III, E. Tirapegui and W. Zeller Eds., (Kluwer, Dordrecht/Boston/London), 64 (1991), 27-42.
![]() ![]() |
Intervals of next generations
Period triple interval combinatorics (
Period three cobweb diagram
Length of the intervals gaps
(a), (b), (c) and (d) show the graphs of
The graph of
The graph of map
Extension of
(a):
The intervals of next generations
Period quintuple combinatorics (
Length of the intervals and gaps
The graphs of
The graph of