We prove global in time dispersion for the wave and the Klein-Gordon equation inside the Friedlander domain by taking full advantage of the space-time localization of caustics and a precise estimate of the number of waves that may cross at a given, large time. Moreover, we uncover a significant difference between Klein-Gordon and the wave equation in the low frequency, large time regime, where Klein-Gordon exhibits a worse decay than the wave, unlike in the flat space.
Citation: |
[1] |
M. D. Blair, H. F. Smith and Ch. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004.![]() ![]() ![]() |
[2] |
G. Eskin, Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., 32 (1977), 17-62.
doi: 10.1007/BF02803574.![]() ![]() ![]() |
[3] |
O. Ivanovici, R. Lascar, G. Lebeau and F. Planchon., Dispersion for the wave equation inside strictly convex domains II: The general case, preprint, https://arXiv.org/abs/1605.08800.
![]() |
[4] |
O. Ivanovici, G. Lebeau and F. Planchon, Strichartz estimates for the wave equation inside strictly convex 2d model domain, preprint, https://arXiv.org/abs/2008.03598.
![]() |
[5] |
O. Ivanovici, G. Lebeau and F. Planchon, Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), 180 (2014), 323-380.
doi: 10.4007/annals.2014.180.1.7.![]() ![]() ![]() |
[6] |
O. Ivanovici, G. Lebeau and F. Planchon, New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, to appear in J. Ec. polytech. Math., https://arXiv.org/abs/2008.02716.
![]() |
[7] |
J. Kato and T. Ozawa, Endpoint strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.
doi: 10.1016/j.matpur.2010.10.001.![]() ![]() ![]() |
[8] |
S. Machihara, K. Nakanishi and T. Ozawa, Small global solutions and the nonrelativistic limit for the nonlinear dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.
doi: 10.4171/RMI/342.![]() ![]() ![]() |
[9] |
R. B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191.
doi: 10.1007/BF01390317.![]() ![]() ![]() |
[10] |
R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.
doi: 10.1002/cpa.3160310504.![]() ![]() ![]() |
[11] |
R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Comm. Pure Appl. Math., 35 (1982), 129-168.
doi: 10.1002/cpa.3160350202.![]() ![]() ![]() |
[12] |
R. B. Melrose and M. E. Taylor, Boundary Problems for Wave Equations With Grazing and Gliding Rays, Available at https://www.unc.edu/math/Faculty/met/wavep.html.
![]() |
[13] |
R. B. Melrose and M. E. Taylor, The radiation pattern of a diffracted wave near the shadow boundary, Comm. Partial Differential Equations, 11 (1986), 599-672.
doi: 10.1080/03605308608820439.![]() ![]() ![]() |
[14] |
O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London; Distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.
doi: 10.1142/p345.![]() ![]() ![]() |