
-
Previous Article
Stabilization of nonautonomous parabolic equations by a single moving actuator
- DCDS Home
- This Issue
-
Next Article
Extinction or coexistence in periodic Kolmogorov systems of competitive type
Grassmannian reduction of cucker-smale systems and dynamical opinion games
Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607, USA |
In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows us to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than $ \pi $.
In the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.
References:
[1] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[2] |
J. Carrillo, Y.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles. Advances in Theory, Models, and Application, 1, Birkhäuser, 2017. |
[3] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[4] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[5] |
Y.-l. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes,
State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.
doi: 10.1016/j.physd.2007.05.007. |
[6] |
J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, Mathematical Surveys, 11, American Mathematical Society, Providence, R.I., 1964. |
[7] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[8] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[9] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[10] |
M. H. DeGroot,
Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 121-132.
|
[11] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch,
Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.
|
[12] |
H. Dietert and R. Shvydkoy, On cucker-smale dynamical systems with degenerate communication, Analysis and Appl., accepted.
doi: 10.1142/S0219530520500050. |
[13] |
T. Do, A. Kiselev, L. Ryzhik and C. Tan,
Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37.
doi: 10.1007/s00205-017-1184-2. |
[14] |
S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201.
doi: 10.1088/1751-8113/43/31/315201. |
[15] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulations, Journal of Artificial Societies and Social Simulation, 5 (2002). |
[16] |
S.-Z. Huang, Gradient inequalities, Mathematical Surveys and Monographs, 126, American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/surv/126. |
[17] |
J. Kim and J. Peszek, Cucker-smale model with a bonding force and a singular interaction kernel, 2018. |
[18] |
Z. Li, X. Xue and D. Yu, On the Lojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 022704.
doi: 10.1063/1.4908104. |
[19] |
S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles (Paris, 1962), Éditions du Centre National de la Recherche Scientifique, Paris, 1963, 87–89. |
[20] |
Z. Mao, Z. Li and G. E. Karniadakis,
Nonlocal flocking dynamics: learning the fractional order of PDEs from particle simulations, Commun. Appl. Math. Comput., 1 (2019), 597-619.
doi: 10.1007/s42967-019-00031-y. |
[21] |
P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska, Singular Cucker-Smale dynamics, in Active Particles, Vol. 2, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019,201–243. |
[22] |
J. Nash,
Non-cooperative games, Ann. of Math. (2), 54 (1951), 286-295.
doi: 10.2307/1969529. |
[23] |
J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982. |
[24] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25–34. |
[25] |
R. Shu and E. Tadmor, Anticipation breeds alignment.
doi: 10.1007/s00205-021-01609-8. |
[26] |
R. Shu and E. Tadmor, Flocking hydrodynamics with external potentials.
doi: 10.1007/s00205-020-01544-0. |
[27] |
R. Shvydkoy, Dynamics and analysis of alignment models of collective behavior., Available at: https://shvydkoy.people.uic.edu/alignment.pdf. |
[28] |
R. Shvydkoy and E. Tadmor, Multi-flocks: Emergent dynamics in systems with multi-scale collective behavior, preprint. |
[29] |
R. Shvydkoy and E. Tadmor, Topologically-based fractional diffusion and emergent dynamics with short-range interactions, to appear in SIMA.
doi: 10.1137/19M1292412. |
[30] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Transactions of Mathematics and Its Applications, 1 (2017).
doi: 10.1093/imatrm/tnx001. |
[31] |
L. Simon,
Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2), 118 (1983), 525-571.
doi: 10.2307/2006981. |
show all references
References:
[1] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler,
Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374. |
[2] |
J. Carrillo, Y.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles. Advances in Theory, Models, and Application, 1, Birkhäuser, 2017. |
[3] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Birkhäuser, 2010,297–336.
doi: 10.1007/978-0-8176-4946-3_12. |
[4] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek,
Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017. |
[5] |
Y.-l. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes,
State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.
doi: 10.1016/j.physd.2007.05.007. |
[6] |
J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, Mathematical Surveys, 11, American Mathematical Society, Providence, R.I., 1964. |
[7] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[8] |
F. Cucker and S. Smale,
Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[9] |
F. Cucker and S. Smale,
On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[10] |
M. H. DeGroot,
Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 121-132.
|
[11] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch,
Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.
|
[12] |
H. Dietert and R. Shvydkoy, On cucker-smale dynamical systems with degenerate communication, Analysis and Appl., accepted.
doi: 10.1142/S0219530520500050. |
[13] |
T. Do, A. Kiselev, L. Ryzhik and C. Tan,
Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37.
doi: 10.1007/s00205-017-1184-2. |
[14] |
S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201.
doi: 10.1088/1751-8113/43/31/315201. |
[15] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulations, Journal of Artificial Societies and Social Simulation, 5 (2002). |
[16] |
S.-Z. Huang, Gradient inequalities, Mathematical Surveys and Monographs, 126, American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/surv/126. |
[17] |
J. Kim and J. Peszek, Cucker-smale model with a bonding force and a singular interaction kernel, 2018. |
[18] |
Z. Li, X. Xue and D. Yu, On the Lojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 022704.
doi: 10.1063/1.4908104. |
[19] |
S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles (Paris, 1962), Éditions du Centre National de la Recherche Scientifique, Paris, 1963, 87–89. |
[20] |
Z. Mao, Z. Li and G. E. Karniadakis,
Nonlocal flocking dynamics: learning the fractional order of PDEs from particle simulations, Commun. Appl. Math. Comput., 1 (2019), 597-619.
doi: 10.1007/s42967-019-00031-y. |
[21] |
P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska, Singular Cucker-Smale dynamics, in Active Particles, Vol. 2, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019,201–243. |
[22] |
J. Nash,
Non-cooperative games, Ann. of Math. (2), 54 (1951), 286-295.
doi: 10.2307/1969529. |
[23] |
J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982. |
[24] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25–34. |
[25] |
R. Shu and E. Tadmor, Anticipation breeds alignment.
doi: 10.1007/s00205-021-01609-8. |
[26] |
R. Shu and E. Tadmor, Flocking hydrodynamics with external potentials.
doi: 10.1007/s00205-020-01544-0. |
[27] |
R. Shvydkoy, Dynamics and analysis of alignment models of collective behavior., Available at: https://shvydkoy.people.uic.edu/alignment.pdf. |
[28] |
R. Shvydkoy and E. Tadmor, Multi-flocks: Emergent dynamics in systems with multi-scale collective behavior, preprint. |
[29] |
R. Shvydkoy and E. Tadmor, Topologically-based fractional diffusion and emergent dynamics with short-range interactions, to appear in SIMA.
doi: 10.1137/19M1292412. |
[30] |
R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Transactions of Mathematics and Its Applications, 1 (2017).
doi: 10.1093/imatrm/tnx001. |
[31] |
L. Simon,
Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2), 118 (1983), 525-571.
doi: 10.2307/2006981. |

[1] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[2] |
Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic and Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028 |
[3] |
Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic and Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008 |
[4] |
Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115 |
[5] |
Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic and Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007 |
[6] |
Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419 |
[7] |
Linglong Du, Xinyun Zhou. The stochastic delayed Cucker-Smale system in a harmonic potential field. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022022 |
[8] |
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 |
[9] |
Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195 |
[10] |
Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2873-2889. doi: 10.3934/dcdsb.2021164 |
[11] |
Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic and Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026 |
[12] |
Jinwook Jung, Peter Kuchling. Emergent dynamics of the fractional Cucker-Smale model under general network topologies. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2831-2856. doi: 10.3934/cpaa.2022077 |
[13] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[14] |
Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic and Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027 |
[15] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[16] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[17] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[18] |
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447 |
[19] |
Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209 |
[20] |
Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic and Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]