December  2021, 41(12): 5765-5787. doi: 10.3934/dcds.2021095

Grassmannian reduction of cucker-smale systems and dynamical opinion games

Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, IL 60607, USA

* Corresponding author: lear@uic.edu

Received  November 2020 Revised  May 2021 Published  December 2021 Early access  July 2021

Fund Project: This work was supported in part by NSF grant DMS-1813351

In this note we study a new class of alignment models with self-propulsion and Rayleigh-type friction forces, which describes the collective behavior of agents with individual characteristic parameters. We describe the long time dynamics via a new method which allows us to reduce analysis from the multidimensional system to a simpler family of two-dimensional systems parametrized by a proper Grassmannian. With this method we demonstrate exponential alignment for a large (and sharp) class of initial velocity configurations confined to a sector of opening less than $ \pi $.

In the case when characteristic parameters remain frozen, the system governs dynamics of opinions for a set of players with constant convictions. Viewed as a dynamical non-cooperative game, the system is shown to possess a unique stable Nash equilibrium, which represents a settlement of opinions most agreeable to all agents. Such an agreement is furthermore shown to be a global attractor for any set of initial opinions.

Citation: Daniel Lear, David N. Reynolds, Roman Shvydkoy. Grassmannian reduction of cucker-smale systems and dynamical opinion games. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5765-5787. doi: 10.3934/dcds.2021095
References:
[1]

G. AlbiN. BellomoL. FermoS.-Y. HaJ. KimL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[2]

J. Carrillo, Y.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles. Advances in Theory, Models, and Application, 1, Birkhäuser, 2017.  Google Scholar

[3]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Birkhäuser, 2010,297–336. doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[4]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[5]

Y.-l. ChuangM. R. D'OrsognaD. MarthalerA. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.  doi: 10.1016/j.physd.2007.05.007.  Google Scholar

[6]

J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, Mathematical Surveys, 11, American Mathematical Society, Providence, R.I., 1964.  Google Scholar

[7]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 121-132.   Google Scholar

[11]

G. DeffuantD. NeauF. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.   Google Scholar

[12]

H. Dietert and R. Shvydkoy, On cucker-smale dynamical systems with degenerate communication, Analysis and Appl., accepted. doi: 10.1142/S0219530520500050.  Google Scholar

[13]

T. DoA. KiselevL. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37.  doi: 10.1007/s00205-017-1184-2.  Google Scholar

[14]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201. doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[15]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulations, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar

[16]

S.-Z. Huang, Gradient inequalities, Mathematical Surveys and Monographs, 126, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/126.  Google Scholar

[17]

J. Kim and J. Peszek, Cucker-smale model with a bonding force and a singular interaction kernel, 2018. Google Scholar

[18]

Z. Li, X. Xue and D. Yu, On the Lojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 022704. doi: 10.1063/1.4908104.  Google Scholar

[19]

S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles (Paris, 1962), Éditions du Centre National de la Recherche Scientifique, Paris, 1963, 87–89.  Google Scholar

[20]

Z. MaoZ. Li and G. E. Karniadakis, Nonlocal flocking dynamics: learning the fractional order of PDEs from particle simulations, Commun. Appl. Math. Comput., 1 (2019), 597-619.  doi: 10.1007/s42967-019-00031-y.  Google Scholar

[21]

P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska, Singular Cucker-Smale dynamics, in Active Particles, Vol. 2, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019,201–243.  Google Scholar

[22]

J. Nash, Non-cooperative games, Ann. of Math. (2), 54 (1951), 286-295.  doi: 10.2307/1969529.  Google Scholar

[23]

J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[24]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25–34. Google Scholar

[25]

R. Shu and E. Tadmor, Anticipation breeds alignment. doi: 10.1007/s00205-021-01609-8.  Google Scholar

[26]

R. Shu and E. Tadmor, Flocking hydrodynamics with external potentials. doi: 10.1007/s00205-020-01544-0.  Google Scholar

[27]

R. Shvydkoy, Dynamics and analysis of alignment models of collective behavior., Available at: https://shvydkoy.people.uic.edu/alignment.pdf. Google Scholar

[28]

R. Shvydkoy and E. Tadmor, Multi-flocks: Emergent dynamics in systems with multi-scale collective behavior, preprint. Google Scholar

[29]

R. Shvydkoy and E. Tadmor, Topologically-based fractional diffusion and emergent dynamics with short-range interactions, to appear in SIMA. doi: 10.1137/19M1292412.  Google Scholar

[30]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Transactions of Mathematics and Its Applications, 1 (2017). doi: 10.1093/imatrm/tnx001.  Google Scholar

[31]

L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2), 118 (1983), 525-571.  doi: 10.2307/2006981.  Google Scholar

show all references

References:
[1]

G. AlbiN. BellomoL. FermoS.-Y. HaJ. KimL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[2]

J. Carrillo, Y.-P. Choi and S. Perez, A review on attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles. Advances in Theory, Models, and Application, 1, Birkhäuser, 2017.  Google Scholar

[3]

J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Birkhäuser, 2010,297–336. doi: 10.1007/978-0-8176-4946-3_12.  Google Scholar

[4]

J. A. CarrilloY.-P. ChoiP. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.  doi: 10.1016/j.nonrwa.2017.02.017.  Google Scholar

[5]

Y.-l. ChuangM. R. D'OrsognaD. MarthalerA. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Phys. D, 232 (2007), 33-47.  doi: 10.1016/j.physd.2007.05.007.  Google Scholar

[6]

J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, Mathematical Surveys, 11, American Mathematical Society, Providence, R.I., 1964.  Google Scholar

[7]

F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.  doi: 10.1109/TAC.2010.2042355.  Google Scholar

[8]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[9]

F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[10]

M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 121-132.   Google Scholar

[11]

G. DeffuantD. NeauF. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.   Google Scholar

[12]

H. Dietert and R. Shvydkoy, On cucker-smale dynamical systems with degenerate communication, Analysis and Appl., accepted. doi: 10.1142/S0219530520500050.  Google Scholar

[13]

T. DoA. KiselevL. Ryzhik and C. Tan, Global regularity for the fractional Euler alignment system, Arch. Ration. Mech. Anal., 228 (2018), 1-37.  doi: 10.1007/s00205-017-1184-2.  Google Scholar

[14]

S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction, J. Phys. A, 43 (2010), 315201. doi: 10.1088/1751-8113/43/31/315201.  Google Scholar

[15]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulations, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar

[16]

S.-Z. Huang, Gradient inequalities, Mathematical Surveys and Monographs, 126, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/126.  Google Scholar

[17]

J. Kim and J. Peszek, Cucker-smale model with a bonding force and a singular interaction kernel, 2018. Google Scholar

[18]

Z. Li, X. Xue and D. Yu, On the Lojasiewicz exponent of Kuramoto model, J. Math. Phys., 56 (2015), 022704. doi: 10.1063/1.4908104.  Google Scholar

[19]

S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Les Équations aux Dérivées Partielles (Paris, 1962), Éditions du Centre National de la Recherche Scientifique, Paris, 1963, 87–89.  Google Scholar

[20]

Z. MaoZ. Li and G. E. Karniadakis, Nonlocal flocking dynamics: learning the fractional order of PDEs from particle simulations, Commun. Appl. Math. Comput., 1 (2019), 597-619.  doi: 10.1007/s42967-019-00031-y.  Google Scholar

[21]

P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska, Singular Cucker-Smale dynamics, in Active Particles, Vol. 2, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019,201–243.  Google Scholar

[22]

J. Nash, Non-cooperative games, Ann. of Math. (2), 54 (1951), 286-295.  doi: 10.2307/1969529.  Google Scholar

[23]

J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[24]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21 (1987), 25–34. Google Scholar

[25]

R. Shu and E. Tadmor, Anticipation breeds alignment. doi: 10.1007/s00205-021-01609-8.  Google Scholar

[26]

R. Shu and E. Tadmor, Flocking hydrodynamics with external potentials. doi: 10.1007/s00205-020-01544-0.  Google Scholar

[27]

R. Shvydkoy, Dynamics and analysis of alignment models of collective behavior., Available at: https://shvydkoy.people.uic.edu/alignment.pdf. Google Scholar

[28]

R. Shvydkoy and E. Tadmor, Multi-flocks: Emergent dynamics in systems with multi-scale collective behavior, preprint. Google Scholar

[29]

R. Shvydkoy and E. Tadmor, Topologically-based fractional diffusion and emergent dynamics with short-range interactions, to appear in SIMA. doi: 10.1137/19M1292412.  Google Scholar

[30]

R. Shvydkoy and E. Tadmor, Eulerian dynamics with a commutator forcing, Transactions of Mathematics and Its Applications, 1 (2017). doi: 10.1093/imatrm/tnx001.  Google Scholar

[31]

L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2), 118 (1983), 525-571.  doi: 10.2307/2006981.  Google Scholar

Figure 1.  Isosceles triangles in the proof of Lemma 4.3
[1]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[2]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[3]

Martin Friesen, Oleksandr Kutoviy. Stochastic Cucker-Smale flocking dynamics of jump-type. Kinetic & Related Models, 2020, 13 (2) : 211-247. doi: 10.3934/krm.2020008

[4]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[5]

Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007

[6]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[7]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[8]

Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021164

[9]

Seung-Yeal Ha, Doheon Kim, Weiyuan Zou. Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field. Kinetic & Related Models, 2020, 13 (4) : 759-793. doi: 10.3934/krm.2020026

[10]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[11]

Jan Haskovec, Ioannis Markou. Asymptotic flocking in the Cucker-Smale model with reaction-type delays in the non-oscillatory regime. Kinetic & Related Models, 2020, 13 (4) : 795-813. doi: 10.3934/krm.2020027

[12]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[13]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[14]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[15]

Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209

[16]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[17]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[18]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[19]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[20]

Zili Chen, Xiuxia Yin. The delayed Cucker-Smale model with short range communication weights. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021030

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (48)
  • HTML views (163)
  • Cited by (0)

Other articles
by authors

[Back to Top]