• Previous Article
    Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces
  • DCDS Home
  • This Issue
  • Next Article
    Grassmannian reduction of cucker-smale systems and dynamical opinion games
December  2021, 41(12): 5789-5824. doi: 10.3934/dcds.2021096

Stabilization of nonautonomous parabolic equations by a single moving actuator

1. 

Johann Radon Institute for Computational and Applied Mathematics, ÖAW, Altenbergerstr. 69, 4040 Linz, Austria

2. 

Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, Heinrichstr. 36, 8010 Graz, Austria

* Corresponding author

Received  November 2020 Revised  May 2021 Published  December 2021 Early access  July 2021

It is shown that an internal control based on a moving indicator function is able to stabilize the state of parabolic equations evolving in rectangular domains. For proving the stabilizability result, we start with a control obtained from an oblique projection feedback based on a finite number of static actuators, then we used the continuity of the state when the control varies in a relaxation metric to construct a switching control where at each given instant of time only one of the static actuators is active, finally we construct the moving control by traveling between the static actuators.

Numerical computations are performed by a concatenation procedure following a receding horizon control approach. They confirm the stabilizing performance of the moving control.

Citation: Behzad Azmi, Karl Kunisch, Sérgio S. Rodrigues. Stabilization of nonautonomous parabolic equations by a single moving actuator. Discrete & Continuous Dynamical Systems, 2021, 41 (12) : 5789-5824. doi: 10.3934/dcds.2021096
References:
[1]

A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7 (2005), 108-152.  doi: 10.1007/s00021-004-0110-1.  Google Scholar

[2]

A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys., 265 (2006), 673-697.  doi: 10.1007/s00220-006-0002-8.  Google Scholar

[3]

B. Azmi and K. Kunisch, A hybrid finite-dimensional RHC for stabilization of time-varying parabolic equations, SIAM J. Control Optim., 57 (2019), 3496-3526.  doi: 10.1137/19M1239787.  Google Scholar

[4]

B. Azmi and K. Kunisch, Analysis of the Barzilai-Borwein step-sizes for problems in Hilbert spaces, J. Optim. Theory Appl., 185 (2020), 819-844.  doi: 10.1007/s10957-020-01677-y.  Google Scholar

[5]

M. Badra, Feedback stabilization of the 2-D and 3-D Navier–Stokes equations based on an extended system, ESAIM Control Optim. Calc. Var., 15 (2009), 934-968.  doi: 10.1051/cocv:2008059.  Google Scholar

[6]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[7]

J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[8]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh–Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[9]

C. CastroN. Cîndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces, SIAM J. Control Optim., 52 (2014), 4027-4056.  doi: 10.1137/140956129.  Google Scholar

[10]

C. Castro and E. Zuazua, Unique continuation and control for the heat equation from an oscillating lower dimensional manifold, SIAM J. Control Optim., 43 (2005), 1400-1434.  doi: 10.1137/S0363012903430317.  Google Scholar

[11]

F. W. Chaves-SilvaL. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl., 101 (2014), 198-222.  doi: 10.1016/j.matpur.2013.05.009.  Google Scholar

[12]

Y.-H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program., 106 (2006), 403-421.  doi: 10.1007/s10107-005-0595-2.  Google Scholar

[13]

M. A. Demetriou, Guidance of mobile actuator-plus-sensor networks for improved control and estimation of distributed parameter systems, IEEE Trans. Automat. Control, 55 (2010), 1570-1584.  doi: 10.1109/TAC.2010.2042229.  Google Scholar

[14] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, 1978.  doi: 10.1007/978-1-4684-7398-8.  Google Scholar
[15]

M. L. J. Hautus, Stabilization controllability and observability of linear autonomous systems, Indag. Math. (Proceedings), 73 (1970), 448-455.  doi: 10.1016/S1385-7258(70)80049-X.  Google Scholar

[16]

Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285.  doi: 10.1137/S0036142901385659.  Google Scholar

[17]

M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space, SIAM J. Optim., 17 (2006), 159-187.  doi: 10.1137/040611598.  Google Scholar

[18]

A. Khapalov, $L^\infty$-exact observability of the heat equation with scanning pointwise sensor, SIAM J. Control Optim., 32 (1994), 1037-1051.  doi: 10.1137/S036301299222737X.  Google Scholar

[19]

A. Khapalov, Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls, ESAIM Control, Optim. Calc. Var., 4 (1999), 83-98.  doi: 10.1051/cocv:1999104.  Google Scholar

[20]

A. Khapalov, Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation, SIAM J. Control Optim., 40 (2001), 231-252.  doi: 10.1137/S0363012999358038.  Google Scholar

[21]

A. Kröner and S. S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls, in Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 2015, 2676–2681. doi: 10.1109/ECC.2015.7330942.  Google Scholar

[22]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), 67. doi: 10.1051/cocv/2018054.  Google Scholar

[23]

K. Kunisch and D. A. Souza, On the one-dimensional nonlinear monodomain equations with moving controls, J. Math. Pures Appl., 117 (2018), 94-122.  doi: 10.1016/j.matpur.2018.05.003.  Google Scholar

[24]

P. MartinL. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660-684.  doi: 10.1137/110856150.  Google Scholar

[25]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Syst., 30 (2018), 11. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[26]

S. S. Rodrigues, Navier–Stokes equation on the Rectangle: Controllability by means of low modes forcing, J. Dyn. Control Syst., 12 (2006), 517-562.  doi: 10.1007/s10883-006-0004-z.  Google Scholar

[27]

S. S. Rodrigues, Methods of Geometric Control Theory in Problems of Mathematical Physics, Ph.D Thesis, Universidade de Aveiro, Portugal, 2008.  Google Scholar

[28]

S. S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations, Appl. Math. Optim.. doi: 10.1007/s00245-017-9474-5.  Google Scholar

[29]

S. S. Rodrigues, Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems, Evol. Equ. Control Theory, 9 (2020), 635-672.  doi: 10.3934/eect.2020027.  Google Scholar

[30]

S. S. Rodrigues, Oblique projection output-based feedback stabilization of nonautonomous parabolic equations, Automatica J. IFAC, 129 (2021), 109621. doi: 10.1016/j.automatica.2021.109621.  Google Scholar

[31]

S. S. Rodrigues and K. Sturm, On the explicit feedback stabilization of one-dimensional linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., 37 (2020), 175-207.  doi: 10.1093/imamci/dny045.  Google Scholar

[32]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.  doi: 10.1016/j.anihpc.2006.04.002.  Google Scholar

[33]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[34]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems Control Found. Appl., Birkhäuser, Boston, 1992. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

show all references

References:
[1]

A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: Controllability by means of low modes forcing, J. Math. Fluid Mech., 7 (2005), 108-152.  doi: 10.1007/s00021-004-0110-1.  Google Scholar

[2]

A. A. Agrachev and A. V. Sarychev, Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys., 265 (2006), 673-697.  doi: 10.1007/s00220-006-0002-8.  Google Scholar

[3]

B. Azmi and K. Kunisch, A hybrid finite-dimensional RHC for stabilization of time-varying parabolic equations, SIAM J. Control Optim., 57 (2019), 3496-3526.  doi: 10.1137/19M1239787.  Google Scholar

[4]

B. Azmi and K. Kunisch, Analysis of the Barzilai-Borwein step-sizes for problems in Hilbert spaces, J. Optim. Theory Appl., 185 (2020), 819-844.  doi: 10.1007/s10957-020-01677-y.  Google Scholar

[5]

M. Badra, Feedback stabilization of the 2-D and 3-D Navier–Stokes equations based on an extended system, ESAIM Control Optim. Calc. Var., 15 (2009), 934-968.  doi: 10.1051/cocv:2008059.  Google Scholar

[6]

M. Badra and T. Takahashi, On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems, ESAIM Control Optim. Calc. Var., 20 (2014), 924-956.  doi: 10.1051/cocv/2014002.  Google Scholar

[7]

J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148.  doi: 10.1093/imanum/8.1.141.  Google Scholar

[8]

T. BreitenK. Kunisch and S. S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of FitzHugh–Nagumo type, SIAM J. Control Optim., 55 (2017), 2684-2713.  doi: 10.1137/15M1038165.  Google Scholar

[9]

C. CastroN. Cîndea and A. Münch, Controllability of the linear one-dimensional wave equation with inner moving forces, SIAM J. Control Optim., 52 (2014), 4027-4056.  doi: 10.1137/140956129.  Google Scholar

[10]

C. Castro and E. Zuazua, Unique continuation and control for the heat equation from an oscillating lower dimensional manifold, SIAM J. Control Optim., 43 (2005), 1400-1434.  doi: 10.1137/S0363012903430317.  Google Scholar

[11]

F. W. Chaves-SilvaL. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl., 101 (2014), 198-222.  doi: 10.1016/j.matpur.2013.05.009.  Google Scholar

[12]

Y.-H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds, Math. Program., 106 (2006), 403-421.  doi: 10.1007/s10107-005-0595-2.  Google Scholar

[13]

M. A. Demetriou, Guidance of mobile actuator-plus-sensor networks for improved control and estimation of distributed parameter systems, IEEE Trans. Automat. Control, 55 (2010), 1570-1584.  doi: 10.1109/TAC.2010.2042229.  Google Scholar

[14] R. V. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, 1978.  doi: 10.1007/978-1-4684-7398-8.  Google Scholar
[15]

M. L. J. Hautus, Stabilization controllability and observability of linear autonomous systems, Indag. Math. (Proceedings), 73 (1970), 448-455.  doi: 10.1016/S1385-7258(70)80049-X.  Google Scholar

[16]

Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285.  doi: 10.1137/S0036142901385659.  Google Scholar

[17]

M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function space, SIAM J. Optim., 17 (2006), 159-187.  doi: 10.1137/040611598.  Google Scholar

[18]

A. Khapalov, $L^\infty$-exact observability of the heat equation with scanning pointwise sensor, SIAM J. Control Optim., 32 (1994), 1037-1051.  doi: 10.1137/S036301299222737X.  Google Scholar

[19]

A. Khapalov, Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls, ESAIM Control, Optim. Calc. Var., 4 (1999), 83-98.  doi: 10.1051/cocv:1999104.  Google Scholar

[20]

A. Khapalov, Mobile point controls versus locally distributed ones for the controllability of the semilinear parabolic equation, SIAM J. Control Optim., 40 (2001), 231-252.  doi: 10.1137/S0363012999358038.  Google Scholar

[21]

A. Kröner and S. S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls, in Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 2015, 2676–2681. doi: 10.1109/ECC.2015.7330942.  Google Scholar

[22]

K. Kunisch and S. S. Rodrigues, Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators, ESAIM Control Optim. Calc. Var., 25 (2019), 67. doi: 10.1051/cocv/2018054.  Google Scholar

[23]

K. Kunisch and D. A. Souza, On the one-dimensional nonlinear monodomain equations with moving controls, J. Math. Pures Appl., 117 (2018), 94-122.  doi: 10.1016/j.matpur.2018.05.003.  Google Scholar

[24]

P. MartinL. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660-684.  doi: 10.1137/110856150.  Google Scholar

[25]

D. Phan and S. S. Rodrigues, Stabilization to trajectories for parabolic equations, Math. Control Signals Syst., 30 (2018), 11. doi: 10.1007/s00498-018-0218-0.  Google Scholar

[26]

S. S. Rodrigues, Navier–Stokes equation on the Rectangle: Controllability by means of low modes forcing, J. Dyn. Control Syst., 12 (2006), 517-562.  doi: 10.1007/s10883-006-0004-z.  Google Scholar

[27]

S. S. Rodrigues, Methods of Geometric Control Theory in Problems of Mathematical Physics, Ph.D Thesis, Universidade de Aveiro, Portugal, 2008.  Google Scholar

[28]

S. S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations, Appl. Math. Optim.. doi: 10.1007/s00245-017-9474-5.  Google Scholar

[29]

S. S. Rodrigues, Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems, Evol. Equ. Control Theory, 9 (2020), 635-672.  doi: 10.3934/eect.2020027.  Google Scholar

[30]

S. S. Rodrigues, Oblique projection output-based feedback stabilization of nonautonomous parabolic equations, Automatica J. IFAC, 129 (2021), 109621. doi: 10.1016/j.automatica.2021.109621.  Google Scholar

[31]

S. S. Rodrigues and K. Sturm, On the explicit feedback stabilization of one-dimensional linear nonautonomous parabolic equations via oblique projections, IMA J. Math. Control Inform., 37 (2020), 175-207.  doi: 10.1093/imamci/dny045.  Google Scholar

[32]

A. Shirikyan, Exact controllability in projections for three-dimensional Navier–Stokes equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 521-537.  doi: 10.1016/j.anihpc.2006.04.002.  Google Scholar

[33]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Basel, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[34]

J. Zabczyk, Mathematical Control Theory: An Introduction, Systems Control Found. Appl., Birkhäuser, Boston, 1992. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

Figure 1.  An internal moving actuator with support $ \overline{\omega(c(t))}\subset\overline{\Omega} $
Figure 2.  Supports of the static actuators. Case $ \Omega\subset {\mathbb R}^2 $
Figure 3.  Example 5.1: Numerical results for $ \beta = 0.1 $
Figure 4.  Example 5.1: Numerical results for $ \beta = 0.5 $
Figure 5.  Example 5.2
[1]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[2]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[3]

Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239

[4]

Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443

[5]

Daniel Franco, Chris Guiver, Phoebe Smith, Stuart Townley. A switching feedback control approach for persistence of managed resources. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021109

[6]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[7]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[8]

Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235

[9]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[10]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, , () : -. doi: 10.3934/era.2021046

[11]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[12]

Xufeng Guo, Gang Liao, Wenxiang Sun, Dawei Yang. On the hybrid control of metric entropy for dominated splittings. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5011-5019. doi: 10.3934/dcds.2018219

[13]

Luca Schenato, Sandro Zampieri. On rendezvous control with randomly switching communication graphs. Networks & Heterogeneous Media, 2007, 2 (4) : 627-646. doi: 10.3934/nhm.2007.2.627

[14]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[15]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[16]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[17]

Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064

[18]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Karl Kunisch, Sérgio S. Rodrigues. Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ode systems. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6355-6389. doi: 10.3934/dcds.2019276

2020 Impact Factor: 1.392

Article outline

Figures and Tables

[Back to Top]