Advanced Search
Article Contents
Article Contents

Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

  • * Corresponding author: Yimin Zhang

    * Corresponding author: Yimin Zhang 

This work is supported by the NSFC under grant numbers 11771127, 11571118 and 11471330. The first author is also supported by the education department of Henan province under the grant number 21A110014. The third author is also supported by the Fundamental Research Funds for the Central Universities of China under the grant number 2017ZD094

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation

    $ \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u = 0 \end{align*} $

    in the anisotropic Sobolev spaces $ H^{s_{1},s_{2}}(\mathbb{R}^{2}) $. When $ \beta <0 $ and $ \gamma >0, $ we prove that the Cauchy problem is locally well-posed in $ H^{s_{1}, s_{2}}(\mathbb{R}^{2}) $ with $ s_{1}>-\frac{1}{2} $ and $ s_{2}\geq 0 $. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang(Transactions of the American Mathematical Society, 364(2012), 3395–3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in $ H^{s_{1},0}(\mathbb{R}^{2}) $ with $ s_{1}<-\frac{1}{2} $ in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not $ C^{3} $. When $ \beta <0,\gamma >0, $ by using the $ U^{p} $ and $ V^{p} $ spaces, we prove that the Cauchy problem is locally well-posed in $ H^{-\frac{1}{2},0}(\mathbb{R}^{2}) $.

    Mathematics Subject Classification: Primary: 35Q53;Secondary: 35B30.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. A. Abramyan and Y. A. Stepanyants, The structure of two-dimensional solitons in media with anomalously small dispersion, Sov. Phys. JETP., 61 (1985), 963-966. 
    [2] M. Ben-Artzi and J. C. Saut, Uniform decay estimates for a class of oscillatory integrals and applications, Diff. Int. Eqns., 12 (1999), 137-145. 
    [3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: The KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.
    [4] J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.  doi: 10.1007/BF01896259.
    [5] R. M. ChenV. Hur and Y. Liu, Solitary waves of the rotation-modified Kadomtsev-Petviashvili equation, Nonlinearity, 21 (2008), 2949-2979.  doi: 10.1088/0951-7715/21/12/012.
    [6] R. M. ChenY. Liu and P. Z. Zhang, Local regularity and decay estimates of solitary waves for the rotation-modified Kadomtsev-Petviashvili equation, Trans. Ameri. Math. Soc., 364 (2012), 3395-3425.  doi: 10.1090/S0002-9947-2012-05383-9.
    [7] J. CollianderC. E. Kenig and G. Staffilani, Low regularity solutions for the Kadomtsev-Petviashvili-I equation, Geom. Funct. Anal., 13 (2003), 737-794.  doi: 10.1007/s00039-003-0429-4.
    [8] J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Sharp global well-posedness for KdV and modified KdV on R and T, J. Amer. Math. Soc., 16 (2003), 705-749.  doi: 10.1090/S0894-0347-03-00421-1.
    [9] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for KdV in Sobolev spaces of negative index, Electron. J. Diff. Eqns., 26 (2001), 7 pp.
    [10] J. CollianderA. D. IonescuC. E. Kenig and G. Staffilani, Weighted low-regularity solutions of the KP-I initial-value problem, Discrete Contin. Dyn. Syst., 20 (2008), 219-258.  doi: 10.3934/dcds.2008.20.219.
    [11] A. Esfahani and S. Levandosky, Stability of solitary waves of the Kadomtsev–Petviashvili equation with a weak rotation, SIAM J. Math. Anal., 49 (2017), 5096-5133.  doi: 10.1137/16M1103865.
    [12] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Astérisque, Séminaire Bourbaki, 1994/95 (1996), 163-187. 
    [13] R. Grimshaw, Evolution equations for weakly nonlinear, long internal waves in a rotating fluid, Stu. Appl. Math., 73 (1985), 1-33.  doi: 10.1002/sapm19857311.
    [14] R. H. J. GrimshawL. A. OstrovskyV. I. Shrira and Yu. A. Stepanyants, Long nonlinear surface and internal gravity waves in a rotating ocean, Surveys in Geophysics, 19 (1998), 289-338. 
    [15] A. Grünrock, New Applications of the Fourier Restriction Norm Method to Wellposedness Problems for Nonlinear Evolution Equations, Ph. D thesis, Universit$\ddot{a}$t Wuppertal in Dissertation, Germany, 2002.
    [16] Z. H. GuoL. Z. Peng and B. X. Wang, On the local regularity of the KP-I equation in anisotropic Sobolev space, J. Math. Pures Appl., 94 (2010), 414-432.  doi: 10.1016/j.matpur.2010.03.012.
    [17] M. Hadac, Well-posedness for the Kadomtsev-Petviashvili II equation and generalizations, Trans. Ameri. Math. Soc., 360 (2008), 6555-6572.  doi: 10.1090/S0002-9947-08-04515-7.
    [18] M. HadacS. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré-AN, 26 (2009), 917-941.  doi: 10.1016/j.anihpc.2008.04.002.
    [19] A. D. IonescuC. E. Kenig and D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.  doi: 10.1007/s00222-008-0115-0.
    [20] P. Isaza and J. Mejía, Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Comm. Partial Diff. Eqns., 26 (2001), 1027-1054.  doi: 10.1081/PDE-100002387.
    [21] C. E. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann I. H. Poincaré-AN, 21 (2004), 827-838.  doi: 10.1016/j.anihpc.2003.12.002.
    [22] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Soviet. Phys. Dokl., 15 (1970), 539-541. 
    [23] C. E. KenigG. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.  doi: 10.1215/S0012-7094-93-07101-3.
    [24] C. E. KenigG. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.
    [25] C. E. Kenig and S. N. Ziesler, Local well-posedness for modified Kadomtsev-Petviashvili equations, Diff. Int. Eqns., 10 (2005), 1111-1146. 
    [26] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudo-differential operators, Commu. Pure. Appl. Math., 58 (2005), 217-284. doi: 10.1002/cpa. 20067.
    [27] H. Koch and D. Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not., 2007 (2007), article ID rnm053, 36pp. doi: 10.1093/imrn/rnm053.
    [28] H. Koch and J. F. Li, Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili II equation, Commun. Partial Diff. Eqns., 42 (2017), 950-976.  doi: 10.1080/03605302.2017.1320410.
    [29] L. MolinetJ. C. Saut and N. Tzvetkov, Well-posedness and ill-posedness results for the Kadomtsev-Petviashvili-I equation, Duke Math. J., 115 (2002), 353-384.  doi: 10.1215/S0012-7094-02-11525-7.
    [30] L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-I equation, Math. Ann., 324 (2002), 255-275.  doi: 10.1007/s00208-002-0338-0.
    [31] L. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-I equation on the background of a non localized solution, Comm. Math. Phys., 272 (2007), 775-810.  doi: 10.1007/s00220-007-0243-1.
    [32] L. C. MolinetJ. C. Saut and N. Tzvetkov, Global well-posedness for the KP-II equation on the background of a non-localized solution, Ann. Inst. H. Poincaré-AN, 28 (2011), 653-676.  doi: 10.1016/j.anihpc.2011.04.004.
    [33] H. Takaoka, Global well-posedness for the Kadomtsev-Petviashvili II equation, Discrete Contin. Dyn. Syst., 6 (2000), 483-499.  doi: 10.3934/dcds.2000.6.483.
    [34] H. Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Diff. Eqns., 5 (2000), 1421-1443. 
    [35] H. Takaoka and N. Tzvetkov, On the local regularity of the Kadomtsev-Petviashvili-II equation, Int. Math. Res. Not., 2001 (2001), 77-114.  doi: 10.1155/S1073792801000058.
    [36] N. Tzvetkov, On the Cauchy problem for Kadomtsev-Petviashvili equation, Comm. Partial Diff. Eqns., 24 (1999), 1367-1397.  doi: 10.1080/03605309908821468.
    [37] N. Tzvetkov, Global low-regularity solutions for Kadomtsev-Petviashvili equation, Diff. Int. Eqns., 13 (2000), 1289-1320. 
    [38] N. Wiener, The quadratic variation of a function and its Fourier coefficients, in Collected Works with Commentaries. Volume II: Generalized Harmonic analysis and Tauberian Theory; Classical Harmonic and Complex Analysis, Mathematicians of Our Time, 15, The MIT Press, Cambridge, MA-London, 1979.
    [39] Y. Zhang, Local well-posedness of KP-I initial value problem on torus in the Besov space, Comm. Partial Diff. Eqns., 41 (2016), 256-281.  doi: 10.1080/03605302.2015.1126733.
  • 加载中

Article Metrics

HTML views(434) PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint