
-
Previous Article
Global wellposedness of nutrient-taxis systems derived by a food metric
- DCDS Home
- This Issue
-
Next Article
Bifurcations in asymptotically autonomous Hamiltonian systems under oscillatory perturbations
On pushed wavefronts of monostable equation with unimodal delayed reaction
1. | Mathematical Institute, Silesian University, 746 01 Opava, Czech Republic |
2. | Instituto de Matemática, Universidad de Talca, Casilla 747, Talca, Chile |
We study the Mackey-Glass type monostable delayed reaction-diffusion equation with a unimodal birth function $ g(u) $. This model, designed to describe evolution of single species populations, is considered here in the presence of the weak Allee effect ($ g(u_0)>g'(0)u_0 $ for some $ u_0>0 $). We focus our attention on the existence of slow monotonic traveling fronts to the equation: under given assumptions, this problem seems to be rather difficult since the usual positivity and monotonicity arguments are not effective. First, we solve the front existence problem for small delays, $ h \in [0,h_p] $, where $ h_p $, given by an explicit formula, is optimal in a certain sense. Then we take a representative piece-wise linear unimodal birth function which makes possible explicit computation of traveling fronts. In this case, we find out that a) increase of delay can destroy asymptotically stable pushed fronts; b) the set of all admissible wavefront speeds has usual structure of a semi-infinite interval $ [c_*, +\infty) $; c) for each $ h\geq 0 $, the pushed wavefront is unique (if it exists); d) pushed wave can oscillate slowly around the positive equilibrium for sufficiently large delays.
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk,
On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited),, Math. Ann., 354 (2012), 73-109.
doi: 10.1007/s00208-011-0722-8. |
[2] |
S. Ai,
Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133.
doi: 10.1016/j.jde.2006.08.015. |
[3] |
M. Alfaro, A. Ducrot and T. Giletti,
Travelling waves for a non- monotone bistable equation with delay: Existence and oscillations, Proc. Lond. Math. Soc., 116 (2018), 729-759.
doi: 10.1112/plms.12092. |
[4] |
M. Bani-Yaghoub, G. Yao, M. Fujiwara and D. E. Amundsen,
Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, Ecological Complexity, 21 (2015), 14-26.
doi: 10.1016/j.ecocom.2014.10.007. |
[5] |
R. D. Benguria and M. C. Depassier,
Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation,, Comm. Math. Phys., 175 (1996), 221-227.
doi: 10.1007/BF02101631. |
[6] |
P. Erm and B. L. Phillips, Evolution transforms pushed waves into pulled waves, The American Naturalist, 195 (2020), E87–E99.
doi: 10.1086/707324. |
[7] |
B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction, Birkhäuser, 2004.
doi: 10.1007/978-3-0348-7964-4. |
[8] |
A. Gomez and S. Trofimchuk,
Global continuation of monotone wavefronts, J. London Math. Soc., 89 (2014), 47-68.
doi: 10.1112/jlms/jdt050. |
[9] |
K. P. Hadeler, Topics in Mathematical Biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, 2017.
doi: 10.1007/978-3-319-65621-2. |
[10] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer-Verlag, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
X. Liang and X.-Q. Zhao,
Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Functional Anal., 259 (2010), 857-903.
doi: 10.1016/j.jfa.2010.04.018. |
[12] |
J. Mallet-Paret,, The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Diff. Eqns. 11 (1999), 1–47.
doi: 10.1023/A:1021889401235. |
[13] |
G. Nadin, L. Rossi, L. Ryzhik and B. Perthame,
Wave-like solutions for nonlocal reaction-diffusion equations: A toy model, Math. Model. Nat. Phenom., 8 (2013), 33-41.
doi: 10.1051/mmnp/20138304. |
[14] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 235 (2007), 219–261.
doi: 10.1016/j.jde.2006.12.010. |
[15] |
W. van Saarloos, Front propagation into unstable states, Physics Reports, 386 (2003), 29–222. |
[16] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Monotone waves for non-monotone and non-local monostable reaction-diffusion equations,, J. Differential Equations, 261 (2016), 1203–1236.
doi: 10.1016/j.jde.2016.03.039. |
[17] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, Discrete Contin. Dyn. Syst., 33 (2013) 2169–2187.
doi: 10.3934/dcds.2013.33.2169. |
[18] |
E. Trofimchuk and S. Trofimchuk,
Admissible wavefronts speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst., 20 (2008), 407-423.
doi: 10.3934/dcds.2008.20.407. |
[19] |
E. Trofimchuk, V. Tkachenko and S. Trofimchuk,
Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307-2332.
doi: 10.1016/j.jde.2008.06.023. |
[20] |
S. Trofimchuk and V. Volpert,
Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities, Nonlinearity, 32 (2019), 2593-2632.
doi: 10.1088/1361-6544/ab0e23. |
[21] |
S.-L. Wu, T.-C. Niu and C.-H. Hsu,
Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations, Discrete Contin. Dyn. Syst., 37 (2017), 3467-3486.
doi: 10.3934/dcds.2017147. |
[22] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[23] |
J. Xin,
Front propagation in heterogeneous media,, SIAM Review, 42 (2000), 161-230.
doi: 10.1137/S0036144599364296. |
show all references
References:
[1] |
M. Aguerrea, C. Gomez and S. Trofimchuk,
On uniqueness of semi-wavefronts (Diekmann-Kaper theory of a nonlinear convolution equation re-visited),, Math. Ann., 354 (2012), 73-109.
doi: 10.1007/s00208-011-0722-8. |
[2] |
S. Ai,
Traveling wave fronts for generalized Fisher equations with spatio-temporal delays, J. Differential Equations, 232 (2007), 104-133.
doi: 10.1016/j.jde.2006.08.015. |
[3] |
M. Alfaro, A. Ducrot and T. Giletti,
Travelling waves for a non- monotone bistable equation with delay: Existence and oscillations, Proc. Lond. Math. Soc., 116 (2018), 729-759.
doi: 10.1112/plms.12092. |
[4] |
M. Bani-Yaghoub, G. Yao, M. Fujiwara and D. E. Amundsen,
Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, Ecological Complexity, 21 (2015), 14-26.
doi: 10.1016/j.ecocom.2014.10.007. |
[5] |
R. D. Benguria and M. C. Depassier,
Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation,, Comm. Math. Phys., 175 (1996), 221-227.
doi: 10.1007/BF02101631. |
[6] |
P. Erm and B. L. Phillips, Evolution transforms pushed waves into pulled waves, The American Naturalist, 195 (2020), E87–E99.
doi: 10.1086/707324. |
[7] |
B. H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction, Birkhäuser, 2004.
doi: 10.1007/978-3-0348-7964-4. |
[8] |
A. Gomez and S. Trofimchuk,
Global continuation of monotone wavefronts, J. London Math. Soc., 89 (2014), 47-68.
doi: 10.1112/jlms/jdt050. |
[9] |
K. P. Hadeler, Topics in Mathematical Biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, 2017.
doi: 10.1007/978-3-319-65621-2. |
[10] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer-Verlag, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[11] |
X. Liang and X.-Q. Zhao,
Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Functional Anal., 259 (2010), 857-903.
doi: 10.1016/j.jfa.2010.04.018. |
[12] |
J. Mallet-Paret,, The Fredholm alternative for functional differential equations of mixed type, J. Dynam. Diff. Eqns. 11 (1999), 1–47.
doi: 10.1023/A:1021889401235. |
[13] |
G. Nadin, L. Rossi, L. Ryzhik and B. Perthame,
Wave-like solutions for nonlocal reaction-diffusion equations: A toy model, Math. Model. Nat. Phenom., 8 (2013), 33-41.
doi: 10.1051/mmnp/20138304. |
[14] |
C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations, J. Differential Equations, 235 (2007), 219–261.
doi: 10.1016/j.jde.2006.12.010. |
[15] |
W. van Saarloos, Front propagation into unstable states, Physics Reports, 386 (2003), 29–222. |
[16] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Monotone waves for non-monotone and non-local monostable reaction-diffusion equations,, J. Differential Equations, 261 (2016), 1203–1236.
doi: 10.1016/j.jde.2016.03.039. |
[17] |
E. Trofimchuk, M. Pinto and S. Trofimchuk, Pushed traveling fronts in monostable equations with monotone delayed reaction,, Discrete Contin. Dyn. Syst., 33 (2013) 2169–2187.
doi: 10.3934/dcds.2013.33.2169. |
[18] |
E. Trofimchuk and S. Trofimchuk,
Admissible wavefronts speeds for a single species reaction-diffusion equation with delay,, Discrete Contin. Dyn. Syst., 20 (2008), 407-423.
doi: 10.3934/dcds.2008.20.407. |
[19] |
E. Trofimchuk, V. Tkachenko and S. Trofimchuk,
Slowly oscillating wave solutions of a single species reaction-diffusion equation with delay, J. Differential Equations, 245 (2008), 2307-2332.
doi: 10.1016/j.jde.2008.06.023. |
[20] |
S. Trofimchuk and V. Volpert,
Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities, Nonlinearity, 32 (2019), 2593-2632.
doi: 10.1088/1361-6544/ab0e23. |
[21] |
S.-L. Wu, T.-C. Niu and C.-H. Hsu,
Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations, Discrete Contin. Dyn. Syst., 37 (2017), 3467-3486.
doi: 10.3934/dcds.2017147. |
[22] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay,, J. Dynam. Diff. Eqns., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[23] |
J. Xin,
Front propagation in heterogeneous media,, SIAM Review, 42 (2000), 161-230.
doi: 10.1137/S0036144599364296. |



[1] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769 |
[2] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[3] |
Wentao Meng, Yuanxi Yue, Manjun Ma. The minimal wave speed of the Lotka-Volterra competition model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021265 |
[4] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[5] |
Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405 |
[6] |
Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 |
[7] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2169-2187. doi: 10.3934/dcds.2013.33.2169 |
[8] |
Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168 |
[9] |
Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147 |
[10] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[11] |
Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867 |
[12] |
Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043 |
[13] |
Yang Wang, Xiong Li. Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3067-3075. doi: 10.3934/dcdsb.2018300 |
[14] |
Monica Conti, Elsa M. Marchini, Vittorino Pata. Semilinear wave equations of viscoelasticity in the minimal state framework. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1535-1552. doi: 10.3934/dcds.2010.27.1535 |
[15] |
Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173 |
[16] |
Sebastian Acosta. A control approach to recover the wave speed (conformal factor) from one measurement. Inverse Problems and Imaging, 2015, 9 (2) : 301-315. doi: 10.3934/ipi.2015.9.301 |
[17] |
Chase Mathison. Thermoacoustic Tomography with circular integrating detectors and variable wave speed. Inverse Problems and Imaging, 2020, 14 (4) : 665-682. doi: 10.3934/ipi.2020030 |
[18] |
Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083 |
[19] |
Marcelo Disconzi, Daniel Toundykov, Justin T. Webster. Front matter. Evolution Equations and Control Theory, 2016, 5 (4) : i-iii. doi: 10.3934/eect.201604i |
[20] |
Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]