Advanced Search
Article Contents
Article Contents

Global wellposedness of nutrient-taxis systems derived by a food metric

  • * Corresponding author: Sun-Ho Choi

    * Corresponding author: Sun-Ho Choi 

Jaewook Ahn is supported by National Research Foundation (NRF) of Korea (Grant no. 2018R1D1A1B07047465). Sun-Ho Choi is supported by National Research Foundation (NRF) of Korea (Grant no. 2017R1E1A1A03070692). Minha Yoo is supported by the National Institute for Mathematical Sciences (NIMS) granted by the Korean government (Grant no. NIMS-B21900000)

Abstract Full Text(HTML) Related Papers Cited by
  • This paper deals with the nutrient-taxis system derived by a food metric. The system was proposed in [Sun-Ho Choi and Yong-Jung Kim: Chemotactic traveling waves by metric of food, SIAM J. Appl. Math. 75 (2015), 2268–2289] using geometric ideas without gradient sensing, and has a simple form but contains a singular diffusive coefficient on the equation for the organism side. To overcome the difficulty arising from this singular structure, we use a weighted $ L^{p} $-estimate involving a weighted Gagliardo-Nirenberg type inequality. In the one dimensional setting, it turns out that the system is shown to be globally well-posed in certain Sobolev spaces and the solutions are uniformly bounded. Moreover, the zero viscosity limit of the equation for the nutrient side is considered. For the same initial data and any given finite time interval, a diffusive solution converges to a non-diffusive solution when the diffusion coefficient vanishes.

    Mathematics Subject Classification: Primary: 35M11, 35Q92; Secondary: 92C17.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708-716. 
    [2] J. Adler and M. Dahl, A method for measuring the motility of bacteria and for comparing random and non-random motility, Microbiology, 46 (1967), 161-173. 
    [3] N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.
    [4] W. Alt, Orientation of cells migrating in a chemotactic gradient, In: Biological Growth and Spread, Springer, Berlin, Heidelberg, 38 (1980), 353–366.
    [5] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, John Wiley & Sons Inc., New York, 1965.
    [6] F. A. C. C. ChalubP. A. MarkowichB. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141.  doi: 10.1007/s00605-004-0234-7.
    [7] S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves by metric of food, SIAM J. Appl. Math., 75 (2015), 2268-2289.  doi: 10.1137/15100429X.
    [8] S.-H. Choi and Y.-J. Kim, A discrete velocity kinetic model with food metric: Chemotaxis traveling waves, Bull. Math. Biol., 79 (2017), 277-302.  doi: 10.1007/s11538-016-0235-4.
    [9] S.-H. Choi and Y.-J. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090, 21 pp. doi: 10.1016/j.jmaa.2020.124090.
    [10] J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687-695.  doi: 10.1016/j.jmaa.2012.05.036.
    [11] M. A. FontelosA. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.  doi: 10.1137/S0036141001385046.
    [12] J. GuoJ. XiaoH. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B (Engl. Ed.), 29 (2009), 629-641.  doi: 10.1016/S0252-9602(09)60059-X.
    [13] C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825-834.  doi: 10.1007/s00033-012-0193-0.
    [14] D. HilhorstY.-J. KimD. Kwon and T. N. Nguyen, Dispersal toward food: A study of a singular limit of an Allen-Cahn equation, J. Math. Biol., 76 (2018), 531-565.  doi: 10.1007/s00285-017-1150-5.
    [15] E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234. 
    [16] E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, Journal of Theoretical Biology, 30 (1971), 235-248. 
    [17] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. doi: 10.1090/gsm/096.
    [18] O. A. Ladyžhenskaya, V. A. Solonnikov and N. N. Ural\'ceva, Linear and Quasi-Linear Equations of Parabolic Type, 23, (Providence, RI: American Mathematical Society), 1968.
    [19] H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.  doi: 10.1137/S0036139995291106.
    [20] D. LiT. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.  doi: 10.1142/S0218202511005519.
    [21] D. LiR. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181-2210.  doi: 10.1088/0951-7715/28/7/2181.
    [22] T. LiR. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443.  doi: 10.1137/110829453.
    [23] H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic balance laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302-338.  doi: 10.1016/j.jde.2014.09.014.
    [24] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.
    [25] F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.
    [26] Y. TaoL. Wang and Z.-A. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821-845.  doi: 10.3934/dcdsb.2013.18.821.
    [27] Z.-A. WangZ. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225-2258.  doi: 10.1016/j.jde.2015.09.063.
    [28] Y. ZhangZ. Tan and M.-B. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal. Real World Appl., 14 (2013), 465-482.  doi: 10.1016/j.nonrwa.2012.07.009.
    [29] M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017-1027.  doi: 10.1090/S0002-9939-06-08773-9.
  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views(454) PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint