doi: 10.3934/dcds.2021106
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the compactness threshold in the critical Kirchhoff equation

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

*Corresponding author: Kanishka Perera

Received  December 2020 Revised  May 2021 Early access July 2021

We study a class of critical Kirchhoff problems with a general nonlocal term. The main difficulty here is the absence of a closed-form formula for the compactness threshold. First we obtain a variational characterization of this threshold level. Then we prove a series of existence and multiplicity results based on this variational characterization.

Citation: Erisa Hasani, Kanishka Perera. On the compactness threshold in the critical Kirchhoff equation. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021106
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963.  doi: 10.1002/cpa.3160440808.  Google Scholar

[5]

P. Drábek and Y. X. Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in RN with critical Sobolev exponent, J. Differential Equations, 140 (1997), 106-132.  doi: 10.1006/jdeq.1997.3306.  Google Scholar

[6]

E. Hebey, Compactness and the Palais-Smale property for critical Kirchhoff equations in closed manifolds, Pacific J. Math., 280 (2016), 41-50.   Google Scholar

[7]

Y. HuangZ. Liu and Y. Wu, On Kirchhoff type equations with critical Sobolev exponent, J. Math. Anal. Appl., 462 (2018), 483-504.  doi: 10.1016/j.jmaa.2018.02.023.  Google Scholar

[8]

S. J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32.  doi: 10.1006/jmaa.1995.1002.  Google Scholar

[9]

J.-F. LiaoX.-F. KeJ. Liu and C.-L. Tang, The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four, Appl. Anal., 97 (2018), 2720-2726.  doi: 10.1080/00036811.2017.1387248.  Google Scholar

[10]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 257 (2014), 1168-1193.  doi: 10.1016/j.jde.2014.05.002.  Google Scholar

[11]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914.  doi: 10.1007/s00030-014-0271-4.  Google Scholar

[12]

D. Naimen and M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal., 186 (2019), 187-208.  doi: 10.1016/j.na.2019.02.003.  Google Scholar

[13]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[14]

Q.-L. XieX.-P. Wu and C.-L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786.  doi: 10.3934/cpaa.2013.12.2773.  Google Scholar

[15]

X. Yao and C. Mu, Multiplicity of solutions for Kirchhoff type equations involving critical Sobolev exponents in high dimension, Math. Methods Appl. Sci., 39 (2016), 3722-3734.  doi: 10.1002/mma.3821.  Google Scholar

[16]

C. Zhang and Z. Liu, Multiplicity of nontrivial solutions for a critical degenerate Kirchhoff type problem, Appl. Math. Lett., 69 (2017), 87-93.  doi: 10.1016/j.aml.2017.01.016.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math., 44 (1991), 939-963.  doi: 10.1002/cpa.3160440808.  Google Scholar

[5]

P. Drábek and Y. X. Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in RN with critical Sobolev exponent, J. Differential Equations, 140 (1997), 106-132.  doi: 10.1006/jdeq.1997.3306.  Google Scholar

[6]

E. Hebey, Compactness and the Palais-Smale property for critical Kirchhoff equations in closed manifolds, Pacific J. Math., 280 (2016), 41-50.   Google Scholar

[7]

Y. HuangZ. Liu and Y. Wu, On Kirchhoff type equations with critical Sobolev exponent, J. Math. Anal. Appl., 462 (2018), 483-504.  doi: 10.1016/j.jmaa.2018.02.023.  Google Scholar

[8]

S. J. Li and M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32.  doi: 10.1006/jmaa.1995.1002.  Google Scholar

[9]

J.-F. LiaoX.-F. KeJ. Liu and C.-L. Tang, The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four, Appl. Anal., 97 (2018), 2720-2726.  doi: 10.1080/00036811.2017.1387248.  Google Scholar

[10]

D. Naimen, The critical problem of Kirchhoff type elliptic equations in dimension four, J. Differential Equations, 257 (2014), 1168-1193.  doi: 10.1016/j.jde.2014.05.002.  Google Scholar

[11]

D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 885-914.  doi: 10.1007/s00030-014-0271-4.  Google Scholar

[12]

D. Naimen and M. Shibata, Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension, Nonlinear Anal., 186 (2019), 187-208.  doi: 10.1016/j.na.2019.02.003.  Google Scholar

[13]

K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.  doi: 10.1016/j.jde.2005.03.006.  Google Scholar

[14]

Q.-L. XieX.-P. Wu and C.-L. Tang, Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent, Commun. Pure Appl. Anal., 12 (2013), 2773-2786.  doi: 10.3934/cpaa.2013.12.2773.  Google Scholar

[15]

X. Yao and C. Mu, Multiplicity of solutions for Kirchhoff type equations involving critical Sobolev exponents in high dimension, Math. Methods Appl. Sci., 39 (2016), 3722-3734.  doi: 10.1002/mma.3821.  Google Scholar

[16]

C. Zhang and Z. Liu, Multiplicity of nontrivial solutions for a critical degenerate Kirchhoff type problem, Appl. Math. Lett., 69 (2017), 87-93.  doi: 10.1016/j.aml.2017.01.016.  Google Scholar

[1]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[2]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[3]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[4]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations & Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[5]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[6]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[7]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[8]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021038

[9]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[10]

Nemat Nyamoradi, Kaimin Teng. Existence of solutions for a Kirchhoff-type-nonlocal operators of elliptic type. Communications on Pure & Applied Analysis, 2015, 14 (2) : 361-371. doi: 10.3934/cpaa.2015.14.361

[11]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021130

[12]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[13]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure & Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[14]

Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022

[15]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[16]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[17]

Lele Du, Minbo Yang. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5847-5866. doi: 10.3934/dcds.2019219

[18]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058

[19]

Xiyou Cheng, Zhaosheng Feng, Lei Wei. Existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with weight functions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3067-3083. doi: 10.3934/dcdss.2021078

[20]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

2020 Impact Factor: 1.392

Article outline

[Back to Top]