\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the number of positive solutions to an indefinite parameter-dependent Neumann problem

Work written under the auspices of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The second author has been supported by the Fondation Sciences Mathématiques de Paris (FSMP) through the project: "Reaction-Diffusion Equations in Population Genetics: a study of the influence of geographical barriers on traveling waves and non-constant stationary solutions''. The third author has received funding from project PGC2018-097104-B-100 of the Spanish Ministry of Science, Innovation and Universities and from the Escuela Técnica Superior de Ingeniería y Diseño Industrial of the Universidad Politécnica de Madrid
Abstract / Introduction Full Text(HTML) Figure(11) Related Papers Cited by
  • We study the second-order boundary value problem

    $ \begin{equation*} \begin{cases}\, -u'' = a_{\lambda,\mu}(t) \, u^{2}(1-u), & t\in(0,1), \\\, u'(0) = 0, \quad u'(1) = 0,\end{cases} \end{equation*} $

    where $ a_{\lambda,\mu} $ is a step-wise indefinite weight function, precisely $ a_{\lambda,\mu}\equiv\lambda $ in $ [0,\sigma]\cup[1-\sigma,1] $ and $ a_{\lambda,\mu}\equiv-\mu $ in $ (\sigma,1-\sigma) $, for some $ \sigma\in\left(0,\frac{1}{2}\right) $, with $ \lambda $ and $ \mu $ positive real parameters. We investigate the topological structure of the set of positive solutions which lie in $ (0,1) $ as $ \lambda $ and $ \mu $ vary. Depending on $ \lambda $ and based on a phase-plane analysis and on time-mapping estimates, our findings lead to three different (from the topological point of view) global bifurcation diagrams of the solutions in terms of the parameter $ \mu $. Finally, for the first time in the literature, a qualitative bifurcation diagram concerning the number of solutions in the $ (\lambda,\mu) $-plane is depicted. The analyzed Neumann problem has an application in the analysis of stationary solutions to reaction-diffusion equations in population genetics driven by migration and selection.

    Mathematics Subject Classification: 34B08, 34B18, 34C23, 35Q92, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Qualitative bifurcation digram of the solutions to (1.1) in the $ (\lambda,\mu) $-plane. The curves $ \mu^{*}_0(\lambda) $ and $ \mu^{**}_0(\lambda) $ define the non-existence region (gray). The curves $ \mu^{*}_1(\lambda) $ and $ \mu^{**}_2(\lambda) $ mark out regions of existence: at least one solution in between $ \mu^{*}_{1}(\lambda) $ and $ \mu^{*}_{2}(\lambda) $ (red) and at least two solutions in between $ \mu^*_2(\lambda) $ and $ \mu^{**}_{2}(\lambda) $ (blue). For $ \lambda\in[\lambda^{*},+\infty) $, at least four solutions in the region above $ \mu^*_4(\lambda) $ (yellow), and at least eight solutions in the one above $ \mu^*_8(\lambda) $ (green).

    Figure 2.  Qualitative graph of the function $ T_{0} $ when $ \lambda\in(0,\lambda^{*}) $ (left), $ \lambda = \lambda^{*} $ (center), and $ \lambda>\lambda^{*} $ (right). The points $ s^{*} $, $ s_{0} $, and $ s_{1} $ are defined in Proposition 2.1

    Figure 3.  Qualitative representation in the $ (u,v) $-plane of the curve $ \Gamma_{0}(\lambda) $ defined in (2.11) when $ \lambda\in(0,\lambda^{*}) $ (left), $ \lambda = \lambda^{*} $ (center), and $ \lambda>\lambda^{*} $ (right)

    Figure 4.  For $ \lambda\in[\lambda^*,+\infty) $, qualitative representations of the graph of the function $ h_{\mu} $ defined in (4.4) (left) and of $ \Gamma_0 $ (blue), $ \Gamma_1 $ (violet), $ \mathcal{M}_{\mu} $ (pink) along with some level lines of (3.2) (gray) in the $ (u,v) $-plane (right). We set $ P(s) = (u_{s}(\sigma),v_{s}(\sigma)) $

    Figure 5.  For $ \lambda\in[\lambda^*,+\infty) $, qualitative graphs of $ T_{i} $, with $ i = 1,2,3 $, which are the times necessary to connect $ \Gamma_{0} $ to $ \Gamma_{1} $, as functions of the initial data $ u(0) = s $ of (2.5): $ T_1 $ (green), $ T_2 $ (blue), and $ T_3 $ (pink)

    Figure 6.  For $ \lambda\in(0,\lambda^{*}) $ and $ \mu>\tilde{\mu}(\lambda) $, qualitative graph of $ T_{1} $, which is the time necessary to connect $ \Gamma_{0} $ to $ \Gamma_{1} $, as a function of the initial data $ u(0) = s $ of (2.5)

    Figure 7.  For $ \lambda\in(0,\lambda^{*}) $, qualitative representations of the graph of the function $ h_{\mu} $ defined in (4.4) (left) and of $ \Gamma_0 $ (blue), $ \Gamma_1 $ (violet), $ \mathcal{M}_{\mu} $ (pink) along with some level lines of (3.2) (gray) in the $ (u,v) $-plane (right). We set $ P(s) = (u_{s}(\sigma),v_{s}(\sigma)) $

    Figure 8.  For $ \lambda\in(0,\lambda^{*}) $ and $ \mu>\tilde{\mu}(\lambda) $, qualitative graphs of $ T_{i} $, with $ i = 1,2,3 $, which are the times necessary to connect $ \Gamma_{0} $ to $ \Gamma_{1} $, as functions of the initial data $ u(0) = s $ of (2.5): $ T_1 $ (green), $ T_2 $ (blue), and $ T_3 $ (pink). The existence of the loop is ensured only for $ \mu $ near $ \tilde{\mu}(\lambda) $

    Figure 9.  For $ \lambda\in(0,\lambda^{*}) $, qualitative representation in the $ (u,v) $-plane of the curves $ \Gamma_0 $ and $ \Gamma_1 $, the manifold $ \mathcal{M}_{\mu} $, and the curves $ \mathfrak{B}_{-} $ and $ \mathfrak{B}_{+} $

    Figure 10.  For $ \lambda\in[\lambda^*,+\infty) $ fixed, a minimal qualitative bifurcation diagram for (1.1) with $ \mu $ as bifurcation parameter. The topological configuration involves: two unbounded branches bifurcating from $ 0 $ and $ 1 $ (black) and three unbounded branches (yellow, green) originating from a supercritical pitchfork bifurcation and two supercritical turning points, respectively

    Figure 11.  For $ \lambda\in(0,\lambda^*) $ fixed, minimal qualitative bifurcation diagrams of (1.1) with $ \mu $ as bifurcation parameter. Depending on $ \lambda $, different topological configurations may appear: only a bounded connected branch (black) connecting $ 0 $ to $ 1 $ producing one to two solutions (left) or a connected branch crossed by a loop (magenta) which increases the number of solutions up to either four (center) or eight (right).

  • [1] A. BoscagginG. Feltrin and E. Sovrano, High multiplicity and chaos for an indefinite problem arising from genetic models, Adv. Nonlinear Stud., 20 (2020), 675-699.  doi: 10.1515/ans-2020-2094.
    [2] K. J. Brown and P. Hess, Stability and uniqueness of positive solutions for a semi-linear elliptic boundary value problem, Differential Integral Equations, 3 (1990), 201-207. 
    [3] G. Feltrin, Positive Solutions to Indefinite Problems, A Topological Approach, Frontiers in Mathematics, Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-94238-4.
    [4] G. Feltrin and P. Gidoni, Multiplicity of clines for systems of indefinite differential equations arising from a multilocus population genetics model, Nonlinear Anal. Real World Appl., 54 (2020), 103108. doi: 10.1016/j.nonrwa.2020.103108.
    [5] G. Feltrin and E. Sovrano, An indefinite nonlinear problem in population dynamics: High multiplicity of positive solutions, Nonlinearity, 31 (2018), 4137-4161.  doi: 10.1088/1361-6544/aac8bb.
    [6] G. Feltrin and E. Sovrano, Three positive solutions to an indefinite Neumann problem: A shooting method, Nonlinear Anal., 166 (2018), 87-101.  doi: 10.1016/j.na.2017.10.006.
    [7] W. H. Fleming, A selection-migration model in population genetics, J. Math. Biol., 2 (1975), 219-233.  doi: 10.1007/BF00277151.
    [8] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.
    [9] J. López-GómezM. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indefinite problems with nonhomogeneous boundary conditions, J. Differential Equations, 255 (2013), 503-523.  doi: 10.1016/j.jde.2013.04.019.
    [10] J. López-GómezM. Molina-Meyer and A. Tellini, Intricate dynamics caused by facilitation in competitive environments within polluted habitat patches, European J. Appl. Math., 25 (2014), 213-229.  doi: 10.1017/S0956792513000429.
    [11] J. López-Gómez and A. Tellini, Generating an arbitrarily large number of isolas in a superlinear indefinite problem, Nonlinear Anal., 108 (2014), 223-248.  doi: 10.1016/j.na.2014.06.003.
    [12] J. López-GómezA. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Commun. Pure Appl. Anal., 13 (2014), 1-73.  doi: 10.3934/cpaa.2014.13.1.
    [13] Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.
    [14] Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.
    [15] Y. LouW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. II. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643.
    [16] T. Nagylaki, Conditions for the existence of clines, Genetics, 3 (1975), 595-615. 
    [17] T. NagylakiL. Su and T. F. Dupont, Uniqueness and multiplicity of clines in an environmental pocket, Theoretical Population Biology, 130 (2019), 106-131.  doi: 10.1016/j.tpb.2019.07.006.
    [18] K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part I, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.
    [19] K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part II, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.
    [20] K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, 268 (2020), 7803-7842.  doi: 10.1016/j.jde.2019.11.082.
    [21] K. NakashimaW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. I. Existence and limiting profiles, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617.
    [22] K. Nakashima and L. Su, Nonuniqueness of an indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, 269 (2020), 4643-4682.  doi: 10.1016/j.jde.2020.03.042.
    [23] P. Omari and E. Sovrano, Positive solutions of indefinite logistic growth models with flux-saturated diffusion, Nonlinear Anal., 201 (2020), 111949. doi: 10.1016/j.na.2020.111949.
    [24] E. Sovrano, A negative answer to a conjecture arising in the study of selection-migration models in population genetics, J. Math. Biol., 76 (2018), 1655-1672.  doi: 10.1007/s00285-017-1185-7.
    [25] A. Tellini, Imperfect bifurcations via topological methods in superlinear indefinite problems, Discrete Contin. Dyn. Syst. (Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl.), (2015), 1050–1059. doi: 10.3934/proc.2015.1050.
    [26] A. Tellini, High multiplicity of positive solutions for superlinear indefinite problems with homogeneous Neumann boundary conditions, J. Math. Anal. Appl., 467 (2018), 673-698.  doi: 10.1016/j.jmaa.2018.07.034.
  • 加载中

Figures(11)

SHARE

Article Metrics

HTML views(1937) PDF downloads(232) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return