Consider the second order nonautonomous lattice systemswith singular perturbations
$ \begin{equation*} \epsilon \ddot{u}_{m}+\dot{u}_{m}+(Au)_{m}+\lambda_{m}u_{m}+f_{m}(u_{j}|j\in I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k},\; \; \epsilon>0 \tag{*} \label{0} \end{equation*} $
and the first order nonautonomous lattice systems
$ \begin{equation*} \dot{u}_{m}+(Au)_{m}+\lambda _{m}u_{m}+f_{m}(u_{j}|j∈I_{mq}) = g_{m}(t),\; \; m\in \mathbb{Z}^{k}. \tag{**} \label{00} \end{equation*} $
Under certain conditions, there are pullback attractors
Citation: |
[1] |
A. Y. Abdallah and R. T. Wannan, Second order non-autonomous lattice systems and their uniform attractors, Commun. Pure Appl. Anal., 18 (2019), 1827-1846.
doi: 10.3934/cpaa.2019085.![]() ![]() ![]() |
[2] |
P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.
doi: 10.1142/S0218127401002031.![]() ![]() ![]() |
[3] |
P. W. Bates, K. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004.![]() ![]() ![]() |
[4] |
A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4.![]() ![]() ![]() |
[5] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, Vol. 49, American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/coll/049.![]() ![]() ![]() |
[6] |
M. M. Freitas, P. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.
doi: 10.1016/j.jde.2017.10.007.![]() ![]() ![]() |
[7] |
J. K. Hale and G. Raugel, Upper semicontinuity of the attractors for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.
doi: 10.1016/0022-0396(88)90104-0.![]() ![]() ![]() |
[8] |
B. Wang, Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003.![]() ![]() ![]() |
[9] |
B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.
doi: 10.1016/j.jmaa.2006.08.070.![]() ![]() ![]() |
[10] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with determinstic non-autonomous, Stoch. Dyn., 14 (2014), 1450009.
doi: 10.1142/s0219493714500099.![]() ![]() ![]() |
[11] |
J. Wang and A. Gu, Existence of backwards-compact pullback attractors for non-autonomous lattice dynamical systems, J. Difference Equ. Appl., 22 (2016), 1906–1911.
doi: 10.1080/10236198.2016.1254205.![]() ![]() |
[12] |
C. Zhao and S. Zhou, Upper semicontinuity of attractors for lattice systems under singularly perturbations, Nonlinear Anal., 72 (2010), 2149-2158.
doi: 10.1016/j.na.2009.09.001.![]() ![]() ![]() |
[13] |
X. Zhao and S. Zhou, Kernel sections for processes and nonautonomous lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 763-785.
doi: 10.3934/dcdsb.2008.9.763.![]() ![]() ![]() |
[14] |
S. Zhou, Attractors for second order lattice dynamical systems, J. Differential Equations, 179 (2002), 605-624.
doi: 10.1006/jdeq.2001.4032.![]() ![]() ![]() |
[15] |
S. Zhou, Attractors for first order disspative lattice dynamical systems, Phys. D, 178 (2003), 51-61.
doi: 10.1016/S0167-2789(02)00807-2.![]() ![]() ![]() |
[16] |
S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368.
doi: 10.1016/j.jde.2004.02.005.![]() ![]() ![]() |
[17] |
S. Zhou, Upper-semicontinuity of attractors for random lattice systems perturbed by small white noises, Nonlinear Anal., 75 (2012), 2793-2805.
doi: 10.1016/j.na.2011.11.022.![]() ![]() ![]() |
[18] |
S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204.
doi: 10.1016/j.jde.2005.06.024.![]() ![]() ![]() |