\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems

  • * Corresponding author: Patrizia Pucci

    * Corresponding author: Patrizia Pucci 
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we establish the existence of at least two (weak) solutions for the following fractional Kirchhoff problem involving singular and exponential nonlinearities

    $ \begin{cases} M\left(\|u\|^{{n}/{s}}\right)(-\Delta)^s_{n/s}u = \mu u^{-q}+ u^{r-1}\exp( u^{\beta})\quad\text{in } \Omega,\\ u>0\qquad\text{in } \Omega,\\ u = 0\qquad\text{in } \mathbb R^n \setminus{ \Omega}, \end{cases} $

    where $ \Omega $ is a smooth bounded domain of $ \mathbb R^n $, $ n\geq 1 $, $ s\in (0,1) $, $ \mu>0 $ is a real parameter, $ \beta <{n/(n-s)} $ and $ q\in (0,1) $.The paper covers the so called degenerate Kirchhoff case andthe existence proofs rely on the Nehari manifold techniques.

    Mathematics Subject Classification: Primary: 35J60; Secondary: 35A15, 49J52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. AutuoriA. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699-714.  doi: 10.1016/j.na.2015.06.014.
    [2] D. Arcoya and L. M. Mérida, Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity, Nonlinear Anal., 95 (2014), 281-291.  doi: 10.1016/j.na.2013.09.002.
    [3] R. AroraJ. GiacomoniD. Goel and K. Sreenadh, Positive solutions of 1-d half-Laplacian equation with singular and exponential nonlinearity, Asymptot. Anal., 118 (2020), 1-34.  doi: 10.3233/ASY-191557.
    [4] K. Bal and P. Garain, Multiplicity of solution for a quasilinear equation with singular nonlinearity, Mediterr. J. Math., 17 (2020) doi: 10.1007/s00009-020-01523-5.
    [5] B. BarriosI. D. BonisM. Medina and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407.  doi: 10.1515/math-2015-0038.
    [6] L. Boccardo, A Dirichlet problem with singular and supercritical nonlinearities, Nonlinear Anal., 75 (2012), 4436-4440.  doi: 10.1016/j.na.2011.09.026.
    [7] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011,599pp.
    [8] A. Canino, L. Montoro, B. Sciunzi and M. Squassina, Nonlocal problems with singular nonlinearity, Bull. Sci. Math., 141 (2017), 223–250. doi: 10.1016/j.bulsci.2017.01.002.
    [9] A. Canino, B. Sciunzi and A. Trombetta, Existence and uniqueness for $p$-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl., 23 (2016), 18pp. doi: 10.1007/s00030-016-0361-6.
    [10] M. G. CrandallP. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2 (1977), 193-222.  doi: 10.1080/03605307708820029.
    [11] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2019), 645-660.  doi: 10.1515/anona-2017-0075.
    [12] A. Fiscella and P. K. Mishra, The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms, Nonlinear Analysis, 186 (2019), 6-32.  doi: 10.1016/j.na.2018.09.006.
    [13] J. Giacomoni, T. Mukherjee and K. Sreenadh, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal., 6 (2017), 327–354. doi: 10.1515/anona-2016-0113.
    [14] J. GiacomoniT. Mukherjee and K. Sreenadh, A global multiplicity result for a very singular critical nonlocal equation, Topol. Methods Nonlinear Anal., 54 (2019), 345-370.  doi: 10.12775/tmna.2019.049.
    [15] J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 117–158.
    [16] Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations, 189 (2003), 487-512.  doi: 10.1016/S0022-0396(02)00098-0.
    [17] N. HiranoC. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations, 9 (2004), 197-220. 
    [18] N. HiranoC. Saccon and N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245 (2008), 1997-2037.  doi: 10.1016/j.jde.2008.06.020.
    [19] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.  doi: 10.1090/S0002-9939-1991-1037213-9.
    [20] C.-Y. LeiJ.-F. Liao and C.-L. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521-538.  doi: 10.1016/j.jmaa.2014.07.031.
    [21] J.-F. LiaoP. ZhangJ. Liu and C.-L. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems with singularity, J. Math. Anal. Appl., 430 (2015), 1124-1148.  doi: 10.1016/j.jmaa.2015.05.038.
    [22] L. Martinazzi, Fractional Adams-Moser-Trudinger type inequalities, Nonlinear Anal., 127 (2015), 263-278.  doi: 10.1016/j.na.2015.06.034.
    [23] G. Mingione and V. Rǎdulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. doi: 10.1016/j.jmaa.2021.125197.
    [24] X. Mingqi, V. D. Rǎdulescu and B. Zhang, Correction to: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. Partial Differential Equations, 58 (2019), 3pp. doi: 10.1007/s00526-019-1550-z.
    [25] X. Mingqi, V. D. Rǎdulescu and B. Zhang, Nonlocal kirchhoff problems with singular exponential nonlinearity, Appl. Math. Optim., (2020). doi: 10.1007/s00245-020-09666-3.
    [26] T. Mukherjee and K. Sreenadh, Fractional elliptic equations with critical growth and singular nonlinearities, Electron. J. Differential Equations, 23 (2016), 23pp.
    [27] T. Mukherjee and K. Sreenadh, On Dirichlet problem for fractional $p$-Laplacian with singular non-linearity, Adv. Nonlinear Anal., 8 (2019), 52-72.  doi: 10.1515/anona-2016-0100.
    [28] L. WangK. Cheng and B. Zhang, A uniqueness result for strong singular Kirchhoff-type fractional laplacian problems, Appl. Math. Optim., 83 (2021), 1859-1875.  doi: 10.1007/s00245-019-09612-y.
  • 加载中
SHARE

Article Metrics

HTML views(1333) PDF downloads(457) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return