doi: 10.3934/dcds.2021113
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The relaxation limit of bipolar fluid models

CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

* Corresponding author: Nuno J. Alves

Received  January 2021 Revised  June 2021 Early access August 2021

This work establishes the relaxation limit from the bipolar Euler-Poisson system to the bipolar drift-diffusion system, for data so that the latter has a smooth solution. A relative energy identity is developed for the bipolar fluid models, and it is used to show that a dissipative weak solution of the bipolar Euler-Poisson system converges in the high-friction regime to a strong and bounded away from vacuum solution of the bipolar drift-diffusion system.

Citation: Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021113
References:
[1]

M. Bessemoulin-Chatard, C. Chainais-Hillairet and A. Jüngel, Uniform $ L^{\infty} $ estimates for approximate solutions of the bipolar drift-diffusion system, in International Conference on Finite Volumes for Complex Applications, Springer Proc. Math. Stat., Springer, Cham, 199 (2017), 381–389.  Google Scholar

[2]

R. Bianchini, Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method, J. Math. Pures Appl., 132 (2019), 280-307.  doi: 10.1016/j.matpur.2019.04.004.  Google Scholar

[3]

J. A. CarrilloA. Wróblewska-Kamińksa and Y. Peng, Relative entropy method for the relaxation limit of hydrodynamic models, Netw. Heterog. Media, 15 (2020), 369-387.  doi: 10.3934/nhm.2020023.  Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, New York: Plenum press, 1 (1984). Google Scholar

[5]

C. M. Dafermos, Stability of motions of thermoelastic fluids, Journal of Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.  Google Scholar

[6]

M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, Monatsh. Math., 154 (2008), 39-50.  doi: 10.1007/s00605-008-0532-6.  Google Scholar

[7]

H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986), 12-35.  doi: 10.1016/0022-247X(86)90330-6.  Google Scholar

[8]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg-theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.  Google Scholar

[9]

X. HuoA. Jüngel and A. E. Tzavaras, High-friction limits of Euler flows for multicomponent systems, Nonlinearity, 32 (2019), 2875-2913.  doi: 10.1088/1361-6544/ab12a6.  Google Scholar

[10]

A. Jüngel, Transport Equations for Semiconductors, Vol. 773, Springer, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[11]

A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4 (1994), 677-703.  doi: 10.1142/S0218202594000388.  Google Scholar

[12]

C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Vlue Problems, Vol. 83, American Mathematical Society, 1994. doi: 10.1090/cbms/083.  Google Scholar

[13]

D. KinderlehrerL. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations, ESAIM Control Optim. Calc. Var., 23 (2017), 137-164.  doi: 10.1051/cocv/2015043.  Google Scholar

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems, 5 (1999), 449-455.  doi: 10.3934/dcds.1999.5.449.  Google Scholar

[15]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261-290.  doi: 10.1080/03605302.2016.1269808.  Google Scholar

[16]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.  Google Scholar

[17]

A. Lenard and I. B. Bernstein, Plasma oscillations with diffusion in velocity space, Phys. Rev., 112 (1958), 1456-1459.  doi: 10.1103/PhysRev.112.1456.  Google Scholar

[18]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.  doi: 10.1007/BF00379918.  Google Scholar

[19]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[20]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[21]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Vol. 2, Princeton University Press, 1970.   Google Scholar

show all references

References:
[1]

M. Bessemoulin-Chatard, C. Chainais-Hillairet and A. Jüngel, Uniform $ L^{\infty} $ estimates for approximate solutions of the bipolar drift-diffusion system, in International Conference on Finite Volumes for Complex Applications, Springer Proc. Math. Stat., Springer, Cham, 199 (2017), 381–389.  Google Scholar

[2]

R. Bianchini, Strong convergence of a vector-BGK model to the incompressible Navier-Stokes equations via the relative entropy method, J. Math. Pures Appl., 132 (2019), 280-307.  doi: 10.1016/j.matpur.2019.04.004.  Google Scholar

[3]

J. A. CarrilloA. Wróblewska-Kamińksa and Y. Peng, Relative entropy method for the relaxation limit of hydrodynamic models, Netw. Heterog. Media, 15 (2020), 369-387.  doi: 10.3934/nhm.2020023.  Google Scholar

[4]

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, New York: Plenum press, 1 (1984). Google Scholar

[5]

C. M. Dafermos, Stability of motions of thermoelastic fluids, Journal of Thermal Stresses, 2 (1979), 127-134.  doi: 10.1080/01495737908962394.  Google Scholar

[6]

M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models, Monatsh. Math., 154 (2008), 39-50.  doi: 10.1007/s00605-008-0532-6.  Google Scholar

[7]

H. Gajewski and K. Gröger, On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., 113 (1986), 12-35.  doi: 10.1016/0022-247X(86)90330-6.  Google Scholar

[8]

J. GiesselmannC. Lattanzio and A. E. Tzavaras, Relative energy for the Korteweg-theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), 1427-1484.  doi: 10.1007/s00205-016-1063-2.  Google Scholar

[9]

X. HuoA. Jüngel and A. E. Tzavaras, High-friction limits of Euler flows for multicomponent systems, Nonlinearity, 32 (2019), 2875-2913.  doi: 10.1088/1361-6544/ab12a6.  Google Scholar

[10]

A. Jüngel, Transport Equations for Semiconductors, Vol. 773, Springer, 2009. doi: 10.1007/978-3-540-89526-8.  Google Scholar

[11]

A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, Math. Models Methods Appl. Sci., 4 (1994), 677-703.  doi: 10.1142/S0218202594000388.  Google Scholar

[12]

C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Vlue Problems, Vol. 83, American Mathematical Society, 1994. doi: 10.1090/cbms/083.  Google Scholar

[13]

D. KinderlehrerL. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations, ESAIM Control Optim. Calc. Var., 23 (2017), 137-164.  doi: 10.1051/cocv/2015043.  Google Scholar

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems, 5 (1999), 449-455.  doi: 10.3934/dcds.1999.5.449.  Google Scholar

[15]

C. Lattanzio and A. E. Tzavaras, From gas dynamics with large friction to gradient flows describing diffusion theories, Comm. Partial Differential Equations, 42 (2017), 261-290.  doi: 10.1080/03605302.2016.1269808.  Google Scholar

[16]

C. Lattanzio and A. E. Tzavaras, Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45 (2013), 1563-1584.  doi: 10.1137/120891307.  Google Scholar

[17]

A. Lenard and I. B. Bernstein, Plasma oscillations with diffusion in velocity space, Phys. Rev., 112 (1958), 1456-1459.  doi: 10.1103/PhysRev.112.1456.  Google Scholar

[18]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.  doi: 10.1007/BF00379918.  Google Scholar

[19]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[20]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[21]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Vol. 2, Princeton University Press, 1970.   Google Scholar
[1]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[2]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[3]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[4]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[5]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[6]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[7]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[8]

José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks & Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023

[9]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[10]

Feimin Huang, Yeping Li. Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 455-470. doi: 10.3934/dcds.2009.24.455

[11]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[12]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[13]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[14]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[15]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[16]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[17]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[18]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[19]

Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77

[20]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

2020 Impact Factor: 1.392

Article outline

[Back to Top]