• Previous Article
    Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity
  • DCDS Home
  • This Issue
  • Next Article
    Decay estimates for Schrödinger heat semigroup with inverse square potential in Lorentz spaces II
doi: 10.3934/dcds.2021117
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

* Corresponding author: Hua Chen

Received  May 2021 Revised  June 2021 Early access August 2021

Fund Project: This work is supported by National Natural Science Foundation of China (Grants Nos. 11631011 and 11626251) and China Postdoctoral Science Foundation (Grants No. 2020M672398)

Let $ \Omega\subset\mathbb{R}^n \; (n\geq 2) $ be a bounded domain with continuous boundary $ \partial\Omega $. In this paper, we study the Dirichlet eigenvalue problem of the fractional Laplacian which is restricted to $ \Omega $ with $ 0<s<1 $. Denoting by $ \lambda_{k} $ the $ k^{th} $ Dirichlet eigenvalue of $ (-\triangle)^{s}|_{\Omega} $, we establish the explicit upper bounds of the ratio $ \frac{\lambda_{k+1}}{\lambda_{1}} $, which have polynomially growth in $ k $ with optimal increase orders. Furthermore, we give the explicit lower bounds for the Riesz mean function $ R_{\sigma}(z) = \sum_{k}(z-\lambda_{k})_{+}^{\sigma} $ with $ \sigma\geq 1 $ and the trace of the Dirichlet heat kernel of fractional Laplacian.

Citation: Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021117
References:
[1]

R. Bañuelos and T. Kulczycki, Trace estimates for stable processes, Probab. Theory Related Fields, 142 (2008), 313-338.  doi: 10.1007/s00440-007-0106-x.  Google Scholar

[2]

R. BañuelosT. Kulczycki and B. Siudeja, On the trace of symmetric stable processes on Lipschitz domains, J. Funct. Anal., 257 (2009), 3329-3352.  doi: 10.1016/j.jfa.2009.06.037.  Google Scholar

[3]

F. A. Berezin, Covariant and contravariant symbols of operators, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1134-1167.  doi: 10.1070/IM1972v006n05ABEH001913.  Google Scholar

[4] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[5]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408.  doi: 10.2140/pjm.1959.9.399.  Google Scholar

[6]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[7]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[8]

H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. Partial Differential Equations, 56 (2017), 12 pp. doi: 10.1007/s00526-017-1220-y.  Google Scholar

[9]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.  Google Scholar

[10]

Q. M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.  Google Scholar

[11]

G. Chiti, Inequalities for the first three membrane eigenvalues, Boll. Un. Mat. Ital., 18 (1981), 144-148.   Google Scholar

[12]

G. Chiti, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital., 1 (1982), 145-151.   Google Scholar

[13]

B. K. Driver, Analysis Tools with Applications, Lecture Notes, Springer, Berlin, 2003. Available from: http://www.math.ucsd.edu/ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf. Google Scholar

[14]

R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, in Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018,210–235. doi: 10.1515/9783110571561-007.  Google Scholar

[15]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37.  doi: 10.1515/crelle-2013-0120.  Google Scholar

[16]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[17]

L. Geisinger, A short proof of Weyl's law for fractional differential operators, J. Math. Phys., 55 (2014), 011504. doi: 10.1063/1.4861935.  Google Scholar

[18]

E. M. Harrell II and L. Hermi, On Riesz means of eigenvalues, Comm. Partial Differential Equations, 36 (2011), 1521-1543.  doi: 10.1080/03605302.2011.595865.  Google Scholar

[19]

E. M. Harrell II and S. Y. Yolcu, Eigenvalue inequalities for Klein-Gordon operators, J. Funct. Anal., 256 (2009), 3977-3995.  doi: 10.1016/j.jfa.2008.12.008.  Google Scholar

[20]

L. Hermi, Two new Weyl-type bounds for the Dirichlet Laplacian, Trans. Amer. Math. Soc., 360 (2008), 1539-1558.  doi: 10.1090/S0002-9947-07-04254-7.  Google Scholar

[21]

V. Ivrii, Spectral asymptotics for fractional Laplacians, in Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, Amer. Math. Soc., [Providence], RI, 2019,159–170. doi: 10.1090/conm/734/14770.  Google Scholar

[22]

P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227.  doi: 10.1006/jfan.1994.1146.  Google Scholar

[23]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.  doi: 10.1016/j.jfa.2011.12.004.  Google Scholar

[24]

A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545.  doi: 10.1006/jfan.1997.3155.  Google Scholar

[25]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318.  doi: 10.1007/BF01213210.  Google Scholar

[26]

G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11 (1961), 419-433.  doi: 10.1112/plms/s3-11.1.419.  Google Scholar

[27]

Y. Safarov, Lower bounds for the generalized counting function, in The Maz'ya Anniversary Collection, (eds. J. Rossmann, P. Takac and G. Wildenhain), Birkhäuser, Basel, 2 (1999), 275–293. doi: 10.1007/978-3-0348-8672-7_16.  Google Scholar

[28]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.  doi: 10.1007/BF01456804.  Google Scholar

[29]

S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048. doi: 10.1142/S0219199712500484.  Google Scholar

show all references

References:
[1]

R. Bañuelos and T. Kulczycki, Trace estimates for stable processes, Probab. Theory Related Fields, 142 (2008), 313-338.  doi: 10.1007/s00440-007-0106-x.  Google Scholar

[2]

R. BañuelosT. Kulczycki and B. Siudeja, On the trace of symmetric stable processes on Lipschitz domains, J. Funct. Anal., 257 (2009), 3329-3352.  doi: 10.1016/j.jfa.2009.06.037.  Google Scholar

[3]

F. A. Berezin, Covariant and contravariant symbols of operators, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1134-1167.  doi: 10.1070/IM1972v006n05ABEH001913.  Google Scholar

[4] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.  Google Scholar
[5]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408.  doi: 10.2140/pjm.1959.9.399.  Google Scholar

[6]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.  Google Scholar

[7]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.  Google Scholar

[8]

H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. Partial Differential Equations, 56 (2017), 12 pp. doi: 10.1007/s00526-017-1220-y.  Google Scholar

[9]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.  Google Scholar

[10]

Q. M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.  Google Scholar

[11]

G. Chiti, Inequalities for the first three membrane eigenvalues, Boll. Un. Mat. Ital., 18 (1981), 144-148.   Google Scholar

[12]

G. Chiti, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital., 1 (1982), 145-151.   Google Scholar

[13]

B. K. Driver, Analysis Tools with Applications, Lecture Notes, Springer, Berlin, 2003. Available from: http://www.math.ucsd.edu/ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf. Google Scholar

[14]

R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, in Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018,210–235. doi: 10.1515/9783110571561-007.  Google Scholar

[15]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37.  doi: 10.1515/crelle-2013-0120.  Google Scholar

[16]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.   Google Scholar

[17]

L. Geisinger, A short proof of Weyl's law for fractional differential operators, J. Math. Phys., 55 (2014), 011504. doi: 10.1063/1.4861935.  Google Scholar

[18]

E. M. Harrell II and L. Hermi, On Riesz means of eigenvalues, Comm. Partial Differential Equations, 36 (2011), 1521-1543.  doi: 10.1080/03605302.2011.595865.  Google Scholar

[19]

E. M. Harrell II and S. Y. Yolcu, Eigenvalue inequalities for Klein-Gordon operators, J. Funct. Anal., 256 (2009), 3977-3995.  doi: 10.1016/j.jfa.2008.12.008.  Google Scholar

[20]

L. Hermi, Two new Weyl-type bounds for the Dirichlet Laplacian, Trans. Amer. Math. Soc., 360 (2008), 1539-1558.  doi: 10.1090/S0002-9947-07-04254-7.  Google Scholar

[21]

V. Ivrii, Spectral asymptotics for fractional Laplacians, in Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, Amer. Math. Soc., [Providence], RI, 2019,159–170. doi: 10.1090/conm/734/14770.  Google Scholar

[22]

P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227.  doi: 10.1006/jfan.1994.1146.  Google Scholar

[23]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.  doi: 10.1016/j.jfa.2011.12.004.  Google Scholar

[24]

A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545.  doi: 10.1006/jfan.1997.3155.  Google Scholar

[25]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318.  doi: 10.1007/BF01213210.  Google Scholar

[26]

G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11 (1961), 419-433.  doi: 10.1112/plms/s3-11.1.419.  Google Scholar

[27]

Y. Safarov, Lower bounds for the generalized counting function, in The Maz'ya Anniversary Collection, (eds. J. Rossmann, P. Takac and G. Wildenhain), Birkhäuser, Basel, 2 (1999), 275–293. doi: 10.1007/978-3-0348-8672-7_16.  Google Scholar

[28]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.  doi: 10.1007/BF01456804.  Google Scholar

[29]

S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048. doi: 10.1142/S0219199712500484.  Google Scholar

[1]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[2]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[3]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[5]

Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581

[6]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[7]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[8]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[9]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[10]

François Bolley, Arnaud Guillin, Xinyu Wang. Non ultracontractive heat kernel bounds by Lyapunov conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 857-870. doi: 10.3934/dcds.2015.35.857

[11]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[12]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[13]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[14]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[15]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[16]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[17]

Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Communications on Pure & Applied Analysis, 2011, 10 (2) : 745-760. doi: 10.3934/cpaa.2011.10.745

[18]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[19]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[20]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

2020 Impact Factor: 1.392

Article outline

[Back to Top]