[1]
|
R. Abraham and J. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
|
[2]
|
V. del Barco and A. Moroianu, Symmetric Killing tensors on nilmanifolds, Bull. Soc. Math. France, 148 (2020), 411-438.
doi: 10.24033/bsmf.2811.
|
[3]
|
W. Bauer and D. Tarama, On the complete integrability of the geodesic flow of pseudo-H-type Lie groups, Anal. Math. Phys., 8 (2018), 493-520.
doi: 10.1007/s13324-018-0250-8.
|
[4]
|
A. V. Bolsinov and I. A. Taimanov, Integrable geodesic flows with positive topological entropy, Invent. math., 140 (2000), 639-650.
doi: 10.1007/s002220000066.
|
[5]
|
L. Butler, Integrable geodesic flows with wild first integrals: The case of two-step nilmanifolds, Ergodic Theory Dynam. Systems, 23 (2003), 771-797.
doi: 10.1017/S0143385702001517.
|
[6]
|
S. G. Dani and M. G. Mainkar, Anosov automorphisms on compact nilmanifolds associated with graphs, Trans. Amer. Math. Soc., 357 (2005), 2235-2251.
doi: 10.1090/S0002-9947-04-03518-4.
|
[7]
|
R. Decoste, L. Demeyer and M. Mainkar, Graphs and metric 2-step nilpotent Lie algebras, Adv. Geom., 18 (2018), 265-284.
doi: 10.1515/advgeom-2017-0052.
|
[8]
|
P. Eberlein, Geometry of 2-step nilpotent Lie groups, Modern Dynamical Systems, Cambridge University Press, (2004), 67–101.
|
[9]
|
P. Eberlein, Left invariant geometry of Lie groups, Cubo, 6 (2004), 427-510.
|
[10]
|
R. Gornet and M. Mast, The length spectrum of riemannian two-step nilmanifolds, Ann. Scient. École Norm. Sup., 33 (2000), 181-209.
doi: 10.1016/S0012-9593(00)00111-7.
|
[11]
|
W. A. de Graaf, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra, 309 (2007), 640-653.
doi: 10.1016/j.jalgebra.2006.08.006.
|
[12]
|
K. Heil, A. Moroianu and U. Semmelmann, Killing and conformal Killing tensors, J. Geom. Phys., 106 (2016), 383-400.
doi: 10.1016/j.geomphys.2016.04.014.
|
[13]
|
S. Helgasson, Differential Geometry, Lie groups and Symmetric Spaces, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/034.
|
[14]
|
A. Kocsard, G. Ovando and S. Reggiani, On first integrals of the geodesic flow on Heisenberg nilmanifolds, Diff. Geom. Appl., 49 (2016), 496-509.
doi: 10.1016/j.difgeo.2016.08.004.
|
[15]
|
B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math., 34 (1979), 195-338.
doi: 10.1016/0001-8708(79)90057-4.
|
[16]
|
V. V. Kozlov, Topological obstructions to the integrability of natural mechanical systems, Dokl. Akad. Nauk SSSR, 249 (1979), 1299-1302.
|
[17]
|
J. Lauret and C. Will, Nilmanifolds of dimension $\leq$ 8 admitting Anosov diffeomorphisms, Trans. Am. Math. Soc., 361 (2009), 2377-2395.
doi: 10.1090/S0002-9947-08-04757-0.
|
[18]
|
M. Mainkar and C. Will, Examples of Anosov Lie algebras, Discrete Contin. Dyn. Syst., 18 (2007), 39-52.
doi: 10.3934/dcds.2007.18.39.
|
[19]
|
G. Ovando, The geodesic flow on nilmanifolds associated to graphs, Rev. Un. Mat. Argentina, 61 (2020), 315-338.
doi: 10.33044/revuma.v61n2a09.
|
[20]
|
T. L. Payne, Anosov automorphisms of nilpotent Lie algebras, J. Mod. Dyn., 3 (2009), 121-158.
doi: 10.3934/jmd.2009.3.121.
|
[21]
|
D. Schueth, Integrability of geodesic flows and isospectrality of Riemannian manifolds, Math. Z., 260 (2008), 595-613.
doi: 10.1007/s00209-007-0290-5.
|
[22]
|
U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z., 245 (2003), 503-527.
doi: 10.1007/s00209-003-0549-4.
|
[23]
|
W. Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math., 59 (1980), 13-51.
doi: 10.1007/BF01390312.
|
[24]
|
I. A. Taimanov, Topological obstructions to the integrability of geodesic flows on non-simply-connected manifolds, Math. USSR-Izv., 30 (1988), 403-409.
doi: 10.1070/IM1988v030n02ABEH001021.
|
[25]
|
I. A. Taimanov, Topology of Riemannian manifolds with integrable geodesic flows, Tr. Mat. Inst. Steklova, 205 (1994), 150-163.
|
[26]
|
A. Thimm, Integrable geodesic flows on homogeneous spaces, Ergodic Theory Dynam. Systems, 1 (1981), 495-517.
doi: 10.1017/S0143385700001401.
|
[27]
|
V. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Reprint of the 1974 Edition. Graduate Texts in Mathematics, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-1126-6.
|
[28]
|
E. Wilson, Isometry groups on homogeneous nilmanifolds, Geom. Dedicata, 12 (1982), 337-346.
doi: 10.1007/BF00147318.
|
[29]
|
J. Wolf, On locally symmetric spaces of non-negative curvature and certain other locally homogeneous spaces, Comment. Math. Helv., 37 (1962/1963), 266-295.
doi: 10.1007/BF02566977.
|
[30]
|
N. M. J. Woodhouse, Killing tensors and the separation of the Hamilton-Jacobi equation, Commun. Math. Phys., 44 (1975), 9-38.
doi: 10.1007/BF01609055.
|