We construct inducing schemes for general multi-dimensional piecewise expanding maps where the base transformation is Gibbs-Markov and the return times have exponential tails. Such structures are a crucial tool in proving statistical properties of dynamical systems with some hyperbolicity. As an application we check the conditions for the first return map of a class of multi-dimensional non-Markov, non-conformal intermittent maps.
Citation: |
[1] |
J. Alves, SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Sci. École Norm. Sup., 33 (2000), 1-32.
doi: 10.1016/S0012-9593(00)00101-4.![]() ![]() ![]() |
[2] |
P. Bálint and I. P. Tóth, Exponential decay of correlations in multi-dimensional dispersing billiards, Ann. Henri Poincaré, 9 (2008), 1309-1369.
doi: 10.1007/s00023-008-0389-1.![]() ![]() ![]() |
[3] |
N. Chernov, Statistical properties of piecewise smooth hyperbolic systems in high dimensions, Discrete Contin. Dynam. Systems, 5 (1999), 425-448.
doi: 10.3934/dcds.1999.5.425.![]() ![]() ![]() |
[4] |
P. Eslami, S. Vaienti and I. Melbourne, Sharp statistical properties for a family of multidimensional non-Markovian non-conformal intermittent maps, Adv. Math., 388 (2021).
doi: 10.1016/j.aim.2021.107853.![]() ![]() ![]() |
[5] |
H. Hu and S. Vaienti, Absolutely continuous invariant measures for non-uniformly expanding maps, Ergodic Theory Dynam. Systems, 29 (2009), 1185-1215.
doi: 10.1017/S0143385708000576.![]() ![]() ![]() |
[6] |
D. Szász, Multidimensional hyperbolic billiards, Contemp. Math., 698 (2017), 201-220.
doi: 10.1090/conm/698/14028.![]() ![]() ![]() |
[7] |
M. Viana, Multidimensional non-hyperbolic attractors, Publ. Math. Inst. Hautes Études Sci., 85 (1997), 63-96.
![]() ![]() |
[8] |
L. S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math., 147 (1998), 585-650.
doi: 10.2307/120960.![]() ![]() ![]() |
[9] |
L. S. Young, Recurrence times and rates of mixing, Israel J. Math., 110 (1999), 153-188.
doi: 10.1007/BF02808180.![]() ![]() ![]() |