The exact null-controllability problem in the class of smooth controls with applications to interconnected systems was considered in [
Citation: |
[1] |
F. Ammar-Kohdja, M. Benabdallah, L. González-Burgos and L. de Teresa, Recent results on the controllability of coupled parabolic problems: A survey, Mathematical Control and Related Fields, 1 (2011), 267-306.
doi: 10.3934/mcrf.2011.1.267.![]() ![]() ![]() |
[2] |
S. Avdonin and S. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge, University Press, 1995.
![]() ![]() |
[3] |
A. Balakrishnan, Applied Functional Analysis, Springer-Verlag, New-York Heidelberg Berlin, 1976.
![]() ![]() |
[4] |
P. Balasz, D. Stoeva and J.-P. Antonie, Classification of general sequences by Frame-Related operators, Sampl. Theory Signal Image Process, 10 (2011), 151–170, arXiv: 10090.1496vl [math.FA].
![]() ![]() |
[5] |
R. Bellmann and K. Cooke, Differential-Difference Equations, New York Academic Press London, 1963.
![]() ![]() |
[6] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, 2$^nd$ edition, Systems and Control, Foundations, Applications, Birkhuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4581-6.![]() ![]() ![]() |
[7] |
R. Boas, A general moment problem, Amer. J. Math., 63 (1941), 361-370.
doi: 10.2307/2371530.![]() ![]() ![]() |
[8] |
A. Butkovskii, The method of moments in Optimal Control Theory for distributed parameter systems, Automation and Remote Control, 24 (1963), 1217-1225.
![]() ![]() |
[9] |
A. Butkovskii, Characterizations of Distributed Systems, Moscow, Nauka Publisher, 1979 (in Russian).
![]() |
[10] |
H. Fattorini, Exact controllability of linear systems in infinite dimensional spaces, Partial Differential Equations and Related Topics, 446 (1975), 166-183.
![]() ![]() |
[11] |
H. Fattorini and D. Russel, Exact controllability theorems for linear parabolic equations in one space dimensions, Archive for Rational Mechanics and Analysis, 43 (1971), 272-292.
doi: 10.1007/BF00250466.![]() ![]() ![]() |
[12] |
R. Gurtain and D. Salamon, Finite dimensional compensators for infinite dimensional systems with unbounded input operators, SIAM J. Control and Optimization, 24 (1986), 797-816.
doi: 10.1137/0324050.![]() ![]() ![]() |
[13] |
J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York Heidelberg Berlin, 1977.
![]() ![]() |
[14] |
E. Hille and R. Philips, Functional Analysis and Semi-Groups, AMS, 1957.
![]() ![]() |
[15] |
M. Krein, Linear Differential Equations in Banach Spaces, Nauka Publisher, Moscow, 1967.
![]() ![]() |
[16] |
I. Lasiecka, Mathematical Control Theory of Coupled PDEs, CBMS-NSF Regional Conference Series in Applied Mathematics, 75, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717099.![]() ![]() ![]() |
[17] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I, Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[18] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II, Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.
![]() |
[19] |
R. Reid, A class of Riesz-Fischer sequences, Proc. Amer. Math. Soc., 123 (1995), 827-829.
doi: 10.1090/S0002-9939-1995-1223519-0.![]() ![]() ![]() |
[20] |
D. Russel, Nonharmonic Fourier series in control theory for distributed parameter systems, J. Math. Anal. Appl., 18 (1967), 542-560.
doi: 10.1016/0022-247X(67)90045-5.![]() ![]() ![]() |
[21] |
D. Salamon, Infinite dimensional linear systems with unbounded control and observation: A functional analytic approach, Trans. Amer. Math. Soc., 300 (1987), 383-431.
doi: 10.2307/2000351.![]() ![]() ![]() |
[22] |
B. Shklyar, Exact null controllability of abstract differential equations by finite-dimensional control and strongly minimal families of exponentials, Differential Equations and Applications, 3 (2011), 171-188.
doi: 10.7153/dea-03-10.![]() ![]() ![]() |
[23] |
B. Shklyar, Exact null controllability of evolution equations by smooth scalar distributed control and applications to controllability of interconnected systems, Applied Mathematics and Computations, 238 (2014), 444-459.
doi: 10.1016/j.amc.2014.03.093.![]() ![]() ![]() |
[24] |
M. Shubov, Exact controllability of damped Timoshenko beam, J. Math. Contr. Inform., 17 (2000), 375-395.
doi: 10.1093/imamci/17.4.375.![]() ![]() ![]() |
[25] |
F. Tricomi, Integral Equations, Interscience Publisher, Inc., New York, London, 1957.
![]() ![]() |
[26] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroup, Birkheauser Advanced Texts: Basler Lehrbucher, Birkheauser Verlag, 2009.
doi: 10.1007/978-3-7643-8994-9.![]() ![]() ![]() |
[27] |
G. Weiss, Admissibility of unbounded control operators, SIAM J. Contr. Optimiz., 27 (1989), 527-545.
doi: 10.1137/0327028.![]() ![]() ![]() |
[28] |
R. Young, An Introduction to Non-harmonic Fourier Series, Academic Press, New York, 1980.
![]() ![]() |
[29] |
R. Young, On the class of Riesz-Fisher sequences, Proc. Amer. Math. Soc., 126 (1998), 1139-1142.
doi: 10.1090/S0002-9939-98-04416-5.![]() ![]() ![]() |