Advanced Search
Article Contents
Article Contents

$ W^{1, p} $ estimates for elliptic problems with drift terms in Lipschitz domains

This work was supported in part by the NNSF of China (No. 11971212)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we establish the $ W^{1,p} $ estimates for solutions of second order elliptic problems with drift terms in bounded Lipschitz domains by using a real variable method. For scalar equations, we prove that the $ W^{1,p} $ estimates hold for $ \frac{3}{2}-\varepsilon<p<3+\varepsilon $ for $ d\geq3 $, and the range for $ p $ is sharp. For elliptic systems, we prove that the $ W^{1,p} $ estimates hold for $ \frac{2d}{d+1}-\varepsilon<p<\frac{2d}{d-1}+\varepsilon $ under the assumption that the Lipschitz constant of the domain is small.

    Mathematics Subject Classification: Primary: 35J25, 35J57; Secondary: 35B45.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Auscher and M. Qafsaoui, Observations on $W^{1, p}$ estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5 (2002), 487-509. 
    [2] L. A. Caffarelli and I. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math., 51 (1998), 1-21.  doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G.
    [3] B. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Ann. of Math. (2), 125 (1987), 437-465.  doi: 10.2307/1971407.
    [4] G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420. 
    [5] M. Dindoš, The $L^p$ Dirichlet and regularity problems for second order elliptic systems with application to the Lamé system, preprint, arXiv: 2006.13015.
    [6] M. DindošS. Hwang and M. Mitrea, The $L^p$ Dirichlet boundary problem for second order elliptic systems with rough coefficients, Trans. Amer. Math. Soc., 374 (2021), 3659-3701.  doi: 10.1090/tran/8306.
    [7] J. Geng, $W^{1, p}$ estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains, Adv. Math., 229 (2012), 2427-2448.  doi: 10.1016/j.aim.2012.01.004.
    [8] J. Geng, Homogenization of elliptic problems with Neumann boundary conditions in non-smooth domains, Acta Math. Sin. (Engl. Ser.), 34 (2018), 612-628.  doi: 10.1007/s10114-017-7229-5.
    [9] J. GengZ. Shen and L. Song, Uniform $W^{1, p}$ estimates for systems of linear elasticity in a periodic medium, J. Funct. Anal., 262 (2012), 1742-1758.  doi: 10.1016/j.jfa.2011.11.023.
    [10] M. GiaquintaMultiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. 
    [11] D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.  doi: 10.1006/jfan.1995.1067.
    [12] C. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat., 45 (2001), 199-217.  doi: 10.5565/PUBLMAT_45101_09.
    [13] S. Kim and G. Sakellaris, Green's function for second order elliptic equations with singular lower order coefficients, Comm. Partial Differential Equations, 44 (2019), 228-270.  doi: 10.1080/03605302.2018.1543318.
    [14] M. Kontovourkis, On Elliptic Equations with Low-Regularity Divergence-Free Drift Terms and the Steady-State Navier-Stokes Equations in Higher Dimensions, Ph. D thesis, University of Minnesota, 2007.
    [15] F. Lin, On current developments in partial differential equations, Commun. Math. Res., 36 (2020), 1-30.  doi: 10.4208/cmr.2020-0004.
    [16] G. Sakellaris, Boundary Value Problems in Lipschitz Domains for Equations with Drifts, Ph. D thesis, The University of Chicago, 2017.
    [17] G. Sakellaris, Boundary value problems in Lipschitz domains for equations with lower order coefficients, Trans. Amer. Math. Soc., 372 (2019), 5947-5989.  doi: 10.1090/tran/7895.
    [18] Z. Shen, Bounds of Riesz transforms on $L^p$ spaces for second order elliptic operators, Ann. Inst. Fourier (Grenoble), 55 (2005), 173-197.  doi: 10.5802/aif.2094.
    [19] Z. Shen, The $L^p$ Dirichlet problem for elliptic systems on Lipschitz domains, Math. Res. Lett., 13 (2006), 143-159.  doi: 10.4310/MRL.2006.v13.n1.a11.
    [20] Z. Shen, The $L^p$ boundary value problems on Lipschitz domains, Adv. Math., 216 (2007), 212-254.  doi: 10.1016/j.aim.2007.05.017.
    [21] Z. Shen, Periodic Homogenization of Elliptic Systems, Operator Theory: Advances and Applications, 269. Advances in Partial Differential Equations (Basel). Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-91214-1.
    [22] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.  doi: 10.5802/aif.204.
    [23] Q. Xu, Uniform regularity estimates in homogenization theory of elliptic system with lower order terms, J. Math. Anal. Appl., 438 (2016), 1066-1107.  doi: 10.1016/j.jmaa.2016.02.011.
    [24] Q. Xu, Uniform regularity estimates in homogenization theory of elliptic systems with lower order terms on the Neumann boundary problem, J. Differential Equations, 261 (2016), 4368-4423.  doi: 10.1016/j.jde.2016.06.027.
    [25] Q. Xu, P. Zhao and S. Zhou, The methods of layer potentials for general elliptic homogenization problems in Lipschitz domains, preprint, arXiv: 1801.09220.
  • 加载中

Article Metrics

HTML views(1571) PDF downloads(322) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint