February  2022, 42(2): 605-621. doi: 10.3934/dcds.2021130

Propagating fronts for a viscous Hamer-type system

1. 

Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, L'Aquila 67100, ITALY

2. 

Dipartimento di Matematica "Guido Castelnuovo", Sapienza Università di Roma, Roma 00185, ITALY

* Corresponding author: Giada Cianfarani Carnevale

Received  February 2021 Revised  July 2021 Published  February 2022 Early access  September 2021

Motivated by radiation hydrodynamics, we analyse a $ 2\times2 $ system consisting of a one-dimensional viscous conservation law with strictly convex flux –the viscous Burgers' equation being a paradigmatic example– coupled with an elliptic equation, named viscous Hamer-type system. In the regime of small viscosity and for large shocks, namely when the profile of the corresponding underlying inviscid model undergoes a discontinuity –usually called sub-shock– it is proved the existence of a smooth propagating front, regularising the jump of the corresponding inviscid equation. The proof is based on Geometric Singular Perturbation Theory (GSPT) as introduced in the pioneering work of Fenichel [5] and subsequently developed by Szmolyan [21]. In addition, the case of small shocks and large viscosity is also addressed via a standard bifurcation argument.

Citation: Giada Cianfarani Carnevale, Corrado Lattanzio, Corrado Mascia. Propagating fronts for a viscous Hamer-type system. Discrete & Continuous Dynamical Systems, 2022, 42 (2) : 605-621. doi: 10.3934/dcds.2021130
References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transf., 85 (2004), 385-418.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[2]

A. Corli and C. Rohde, Singuilar limits for a parabolic-elliptic regularization of scalar conservation laws, J. Differ. Equations, 253 (2012), 1399-1421.  doi: 10.1016/j.jde.2012.05.006.  Google Scholar

[3]

J.-F. CoulombelT. GoudonP. Lafitte and C. Lin, Analysis of large amplitude shock profiles for non–equilibrium radiative hydrodynamics: Formation of Zeldovich spikes, Shock Waves, 22 (2012), 181-197.  doi: 10.1007/s00193-012-0368-9.  Google Scholar

[4]

G. Faye, "An introduction to bifurcation theory'', 2011. Available from: https://www.math.univ-toulouse.fr/ gfaye/ENS11/chap_bif.pdf Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asymptotics, Multiscale Model. Sim., 4 (2005), 1245-1279.  doi: 10.1137/040621041.  Google Scholar

[7]

K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24 (1971), 155-168.   Google Scholar

[8]

S. Kawashima and S. Nishibata, Shock waves for a model of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117.  doi: 10.1137/S0036141097322169.  Google Scholar

[9]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[10]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190 (2003), 439–465. doi: 10.1016/S0022-0396(02)00158-4.  Google Scholar

[11]

C. LattanzioC. MasciaT. NguyenR. G. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206.  doi: 10.1137/09076026X.  Google Scholar

[12]

C. LattanzioC. Mascia and D. Serre, Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J., 56 (2007), 2601-2640.  doi: 10.1512/iumj.2007.56.3043.  Google Scholar

[13]

C. Lattanzio, C. Mascia and D. Serre, Nonlinear hyperbolic–elliptic coupled systems arising in radiation dynamics, Hyperbolic problems: Theory, Numerics, Applications, Springer, Berlin, 2008,661–669. doi: 10.1007/978-3-540-75712-2_66.  Google Scholar

[14]

C. LinJ.-F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Physica D, 218 (2006), 83-94.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[15]

R. B. LowrieJ. E. Morel and J. A. Hittinger, The coupling of radiation and hydrodynamics, Astrophys. J., 521 (1999), 432-450.  doi: 10.1086/307515.  Google Scholar

[16]

C. Mascia, Small, medium and large shock waves for radiative Euler equations, Physica D, 245 (2013), 46-56.  doi: 10.1016/j.physd.2012.11.008.  Google Scholar

[17] D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1984.   Google Scholar
[18]

T. NguyenR. G. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Physica D, 239 (2010), 428-453.  doi: 10.1016/j.physd.2010.01.011.  Google Scholar

[19]

L. Perko, Differential Equations and Dynamical Systems, 3$^{rd}$ edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[20]

S. Schochet and E. Tadmor, The regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal., 119 (1992), 95-107.  doi: 10.1007/BF00375117.  Google Scholar

[21]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problem, J. Differ. Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[22]

M. XuanT. Hui and J. Jin, Global asymptotic towad the rarefaction waves for a parabolic-elliptic system related to the Camassa–Holm shallow water equation, Acta Math. Sci., 29B (2009), 371-390.  doi: 10.1016/S0252-9602(09)60037-0.  Google Scholar

[23]

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York 1967. Reprinted by Dover Publ., New York, 2002. Google Scholar

show all references

References:
[1]

C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transf., 85 (2004), 385-418.  doi: 10.1016/S0022-4073(03)00233-4.  Google Scholar

[2]

A. Corli and C. Rohde, Singuilar limits for a parabolic-elliptic regularization of scalar conservation laws, J. Differ. Equations, 253 (2012), 1399-1421.  doi: 10.1016/j.jde.2012.05.006.  Google Scholar

[3]

J.-F. CoulombelT. GoudonP. Lafitte and C. Lin, Analysis of large amplitude shock profiles for non–equilibrium radiative hydrodynamics: Formation of Zeldovich spikes, Shock Waves, 22 (2012), 181-197.  doi: 10.1007/s00193-012-0368-9.  Google Scholar

[4]

G. Faye, "An introduction to bifurcation theory'', 2011. Available from: https://www.math.univ-toulouse.fr/ gfaye/ENS11/chap_bif.pdf Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium and non equilibrium diffusion asymptotics, Multiscale Model. Sim., 4 (2005), 1245-1279.  doi: 10.1137/040621041.  Google Scholar

[7]

K. Hamer, Nonlinear effects on the propagation of sound waves in a radiating gas, Quart. J. Mech. Appl. Math., 24 (1971), 155-168.   Google Scholar

[8]

S. Kawashima and S. Nishibata, Shock waves for a model of the radiating gas, SIAM J. Math. Anal., 30 (1999), 95-117.  doi: 10.1137/S0036141097322169.  Google Scholar

[9]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[10]

C. Lattanzio and P. Marcati, Global well-posedness and relaxation limits of a model for radiating gas, J. Differential Equations, 190 (2003), 439–465. doi: 10.1016/S0022-0396(02)00158-4.  Google Scholar

[11]

C. LattanzioC. MasciaT. NguyenR. G. Plaza and K. Zumbrun, Stability of scalar radiative shock profiles, SIAM J. Math. Anal., 41 (2009/10), 2165-2206.  doi: 10.1137/09076026X.  Google Scholar

[12]

C. LattanzioC. Mascia and D. Serre, Shock waves for radiative hyperbolic-elliptic systems, Indiana Univ. Math. J., 56 (2007), 2601-2640.  doi: 10.1512/iumj.2007.56.3043.  Google Scholar

[13]

C. Lattanzio, C. Mascia and D. Serre, Nonlinear hyperbolic–elliptic coupled systems arising in radiation dynamics, Hyperbolic problems: Theory, Numerics, Applications, Springer, Berlin, 2008,661–669. doi: 10.1007/978-3-540-75712-2_66.  Google Scholar

[14]

C. LinJ.-F. Coulombel and T. Goudon, Shock profiles for non-equilibrium radiating gases, Physica D, 218 (2006), 83-94.  doi: 10.1016/j.physd.2006.04.012.  Google Scholar

[15]

R. B. LowrieJ. E. Morel and J. A. Hittinger, The coupling of radiation and hydrodynamics, Astrophys. J., 521 (1999), 432-450.  doi: 10.1086/307515.  Google Scholar

[16]

C. Mascia, Small, medium and large shock waves for radiative Euler equations, Physica D, 245 (2013), 46-56.  doi: 10.1016/j.physd.2012.11.008.  Google Scholar

[17] D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, New York, 1984.   Google Scholar
[18]

T. NguyenR. G. Plaza and K. Zumbrun, Stability of radiative shock profiles for hyperbolic-elliptic coupled systems, Physica D, 239 (2010), 428-453.  doi: 10.1016/j.physd.2010.01.011.  Google Scholar

[19]

L. Perko, Differential Equations and Dynamical Systems, 3$^{rd}$ edition, Texts in Applied Mathematics, 7, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[20]

S. Schochet and E. Tadmor, The regularized Chapman–Enskog expansion for scalar conservation laws, Arch. Ration. Mech. Anal., 119 (1992), 95-107.  doi: 10.1007/BF00375117.  Google Scholar

[21]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problem, J. Differ. Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[22]

M. XuanT. Hui and J. Jin, Global asymptotic towad the rarefaction waves for a parabolic-elliptic system related to the Camassa–Holm shallow water equation, Acta Math. Sci., 29B (2009), 371-390.  doi: 10.1016/S0252-9602(09)60037-0.  Google Scholar

[23]

Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York 1967. Reprinted by Dover Publ., New York, 2002. Google Scholar

[1]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[2]

Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659

[3]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 119-137. doi: 10.3934/dcdss.2020007

[4]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[5]

Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018

[6]

Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111

[7]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[8]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[9]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[10]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[11]

Yūki Naito, Takasi Senba. Bounded and unbounded oscillating solutions to a parabolic-elliptic system in two dimensional space. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1861-1880. doi: 10.3934/cpaa.2013.12.1861

[12]

Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133

[13]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[14]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145

[15]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[16]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[17]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[18]

Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

[19]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[20]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (171)
  • HTML views (200)
  • Cited by (0)

[Back to Top]